{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

thomasET_226348_ism54

# thomasET_226348_ism54 - CHAPTER 11 INFINITE SEQUENCES AND...

This preview shows pages 1–4. Sign up to view the full content.

CHAPTER 11 INFINITE SEQUENCES AND SERIES 11.1 SEQUENCES 1. a 0, a , a , a " #\$% ±" ± " ± ± # œœ ± ± ± 11 2 13 2 14 3 1 4 39 41 6 # ### 2. a 1, a , a , a " "" # œœ œœ 1 1 1 1! ! 2 3! 6 4! 24 3. a 1, a , a , a "# \$ % ±± " ± ± ± ± ± " œœœœ ±œœ ± (1 ) ( ) ) ) 1 4 6 1 5 8 17 #\$ % & 4. a 2 ( 1) 1, a 2 ( 1) 3, a 2 ( 1) 1, a 2 ( 1) 3 "#\$% œ²± œ 5. a , a , a , a # #### """" # 2222 22 & % 6. a , a , a , a " ± " " ±±± " ## œ œœœœœœœ 1 3 2 1 7 2 1 5 24 28 1 6 2 % 7. a 1, a 1 , a , a , a , a , \$ % & ' "" " " # # œ œ²œ œ² œ œ ² œ œ 3 3 7 7 15 15 31 63 4 4 8 8 16 32 % a, a ()*" ! œœœ œ 127 255 511 1023 64 128 256 512 8. a 1, a , a , a , a , a , a , a , \$ % & ' ( ) " " " " " # # œ œ œ œ œ œ œ œ ˆ‰ ˆ ‰ " 3 6 4 4 5 1 0 7 0 5040 40,320 64 a *" ! 362,880 3,628,800 9. a 2, a 1, a , a , a , \$ % & # # " œ ±œ œ œ ) ( 2 ) ) ( 1 ) 8 ) ) % " # & " 4 a , a , a , a , a '( ) * " ! """ " " œ 16 3 64 1 8 256 10. a 2, a 1, a , a , a , a , " # \$ %&' œ± œ œ œ œ 1( 2) 2( 1) 33 4 5 5 3 34 †† 2 3 " # a ! 749 5 11. a 1, a 1, a 1 1 2, a 2 1 3, a 3 2 5, a 8, a 13, a 21, a 34, a 55 " # \$%&' ! œ œ œ œ œ œ œ 12. a 2, a 1, a , a , a 1, a 2, a 2, a 1, a , a \$ % & ' () * " ! # ± ± œ œ œ œ œ œ ˆ " # 1 13. a ( 1) , n 1, 2, 14. a ( 1) , n 1, 2, n n n1 n œ á œ á ² 15. a ( 1) n , n 1, 2, 16. a , n 1, 2, n n n œ á œ œ á ²# ±" # 17. a n 1, n 1, 2, 18. a n 4 , n 1, 2, n n œ ± œá œ ±œá # 19. a 4n 3, n 1, 2, 20. a 4n 2 , n 1, 2, n n œ± œ á 21. a , n 1, 2, 22. a , n 1, 2, n n 1(1 ) n( 1 ) n á œ œ Ú Û œ á ²± # ±²± n 23. lim 2 (0.1) 2 converges (Theorem 5, #4) n Ä_ ²œ Ê n

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
694 Chapter 11 Infinite Sequences and Series 24. lim lim 1 1 converges nn Ä_ n( ) (1 ) ±² " ² œ± œ Ê 25. 1 converges n ² ±# # ² ± 2n 2 1n 2 2 œœ œ ² Ê ˆ‰ " " n n 26. diverges 2n 13n 2n 3 ±" ² ± ² È È Š‹ ² _ Ê " " È È n n 27. 5 converges ± ² ± 5n n8 n 5 1 % %\$ " % ² Ê n 8 n 28. 0 converges n n3 n 5n 6 (n 3)(n 2) n ±± " ± ± ± # # œ Ê 29. lim (n 1) diverges n n2 n1 (n 1)(n 1) # ²± ²² ² œ _ Ê 30 diverges ² ² ² n 70 4n n 4 \$ # _ Ê " # # n 70 n 31. 1 ( 1) does not exist diverges 32. lim ( 1) 1 does not exist diverges ab Ê ² ² Ê n n " n 33. 1 1 converges ˆ ˆ n n n " " " " " ## # # ²œ ± ²œÊ 34. 2 3 6 converges 35. 0 converges ² ± œÊ œÊ "" # ² ²" () 36. 0 converges œ Ê " ²" n n n 37. 2 converges n É É Ê È 2n 2n œ Ê 2 1 ± " n 38. diverges (0.9) 9 0 n _ Ê n 39. lim sin sin sin 1 converges 11 1 # ±œ ± œ œ Ê 40. lim n cos (n ) lim (n )( 1) does not exist diverges 1 œ² Ê n 41. 0 because converges by the Sandwich Theorem for sequences n sin n sin n n n Ÿ Ÿ Ê 42. 0 because 0 converges by the Sandwich Theorem for sequences n sin n sin n # " n œŸ Ÿ Ê 43. 0 converges (using l'Hopital's rule) ^ n ln 2 " Ê 44. diverges (using l'Hopital's rule) ^ n n 33 l n 3 n 6 n 6 3( ln 3 ) 3 ) \$# #\$ œ œœœ _ Ê 45. 0 converges n n ln (n ) n 1 ± ± È È œ œ Ê " " # " n 2 n n È È
Section 11.1 Sequences 695 46. lim 1 converges nn Ä_ ln n ln 2n œœ Ê ˆ‰ " n 2 2n 47. lim 8 1 converges (Theorem 5, #3) n 1n Î œÊ 48. lim (0.03) 1 converges (Theorem 5, #3) n Î 49. 1 e converges (Theorem 5, #5) n ±œ Ê 7 n n ( 50. 1 1 e converges (Theorem 5, #5) ’“ ²œ ± œ Ê " ±" ±" () n n 51. 10n lim 10 n 1 1 1 converges (Theorem 5, #3 and #2) È n œ Ê ÎÎ †† 52. n n 1 1 converges (Theorem 5, #2) È È n n # # # œ Ê 53. 1 converges (Theorem 5, #3 and #2) n 3 n1 lim 3 lim n Î " œ Ê n n Ä_ Ä_ Î Î 54.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### Page1 / 82

thomasET_226348_ism54 - CHAPTER 11 INFINITE SEQUENCES AND...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online