6.2-6.3

# 6.2-6.3 - 406 Chapter 6 Applications of Definite Integrals...

This preview shows pages 1–4. Sign up to view the full content.

406 Chapter 6 Applications of Definite Integrals 6.2 VOLUME BY CYLINDRICAL SHELLS 1. For the sketch given, a 0, b 2; œœ V 2 dx 2 x 1 dx 2 x dx 2 2 œ œ ±œ ±œ± œ ± '' ' a0 0 b2 2 11 1 1 1 ˆ‰ Š Š‹ shell shell radius height 4 4 16 16 xx x x 4 1 6 #\$ # % ## # ! 236 2. For the sketch given, a 0, b 2; V 2 dx 2 x 2 dx 2 2x dx 2 x 2 (4 1) 6 œ œ ²œ ²œ² œ ² œ ' 0 2 1 1 1 1 Š Š shell shell radius height 4 4 16 x % # # ! 3. For the sketch given, c 0, d 2; È V 2 dy 2 y y dy 2 y dy 2 2 œ œ œ ' c0 0 d2 2 1 1 1 ab shell shell radius height 4 y ÈÈ # ! % È 4. For the sketch given, c 0, d 3; È V 2 dy 2 y 3 3 y dy 2 2 ² ² œ œ œ ' 0 d3 3 1 1 cd shell shell radius height 4 y 3 9 ! # % È 1 5. For the sketch given, a 0, b 3; È V 2 dx 2 x x 1 dx; ± b3 Š È shell shell radius height È # u x 1 du 2x dx; x 0 u 1, x 3 u 4 ’“ È œ±Ê œ œÊœ œ Êœ # V u du u 4 1 (8 1) Äœ œ œ ' 1 4 "Î# \$Î# \$Î# % " ±‘ ˆ ˆ 22 2 1 4 33 3 3 1 6. For the sketch given, a 0, b 3; V 2 dx 2 x dx; Š shell shell radius height 9x x9 È \$ ± u x 9 du 3x dx 3 du 9x dx; x 0 u 9, x 3 u 36 c d Ê œ œÊœ œÊœ \$# # V 3u du 6 2u 12 36 9 36 œ œ ² œ 1 1 ' 9 36 ²"Î# "Î# \$' * 7. a 0, b 2; V 2 dx 2 x x dx ² ² ± shell shell radius height 2 x 2 x dx 3x dx x 8 œ œ 00 1 1 \$ # # ! 3 8. a 0, b 1; V 2 dx 2 x 2x dx ² b1 ˆ shell shell radius height 2 x 2 dx x œ œ 1 1 ' 0 1 1 0 ' 3x # # " !

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Section 6.2 Volume by Cylindrical Shells 407 9. a 0, b 1; œœ V 2 dx 2 x (2 x) x dx ± ± '' a0 b1 11 ˆ‰ Š‹ cd shell shell radius height # 2 2 xx x d x2x œ± ± œ ± ± ' 0 1 ab ’“ #\$ # " ! xx 34 \$ % 21 2 ± œ œ œ ˆ "" ± ± 3 4 12 12 6 1 243 1 0 5 10. a 0, b 1; V 2 dx 2 x 2 x ± ± shell shell radius height ## 2 x2 2 x d x 4 x x d x œ ± 00 a b 44 œ ± œ 1 42 4 # % # " ! 11. a 0, b 1; V 2 dx 2 x x (2x 1) dx ± ± ± È shell shell radius height 2 x 2x 2 x x x ² œ ± ² ' 0 1 ± \$Î# # &Î# \$ # " # " ! 22 53 ² œ œ ˆ 2 2 12 20 15 7 5 3 30 15 ² # 1 12. a , b 4; œ" œ V 2 dx 2 x x dx a1 b4 ˆ shell shell radius height 2 3 ±"Î# 3 x dx 3 x 2 4 œ ± " 1 ' 1 4 "Î# \$Î# \$Î# % " ±‘ ˆ 2 3 2( 8 1 ) 1 4 œ 13. (a) xf(x) xf(x) ; since sin 0 0 we have x, 0 x x, x 0 sin x, 0 x 0, x 0 œÊ œ œ ³Ÿ œ œ sin x x 1 1 xf(x) xf(x) sin x, 0 x sin x, 0 x sin x, x 0 œ Ÿ Ÿ œ œ 1 1 (b) V 2 dx 2 x f(x) dx and x f(x) sin x, 0 x by part (a) œ Ÿ Ÿ b 1 shell shell radius height 1 †† V 2 sin x dx 2 [ cos x] 2 ( cos cos 0) 4 Êœ ² œ 1 1 1 ' 0 1 1 ! 14. (a) xg(x) xg(x) ; since tan 0 0 we have 0 x x 0, x 0 tan x, 0 x /4 0, x 0 œ œ œ œ tan x x4 # 1 # 1 xg(x) xg(x) tan x, 0 x /4 tan x, 0 x /4 tan x, x œ Ÿ Ÿ œ œ # # # 1 1
408 Chapter 6 Applications of Definite Integrals (b) V 2 dx 2 x g(x) dx and x g(x) tan x, 0 x /4 by part (a) œœ œ Ÿ Ÿ '' a0 b4 11 1 ˆ‰ Š‹ shell shell radius height 1 Î †† # V 2 tan x dx 2 sec x 1 dx 2 [tan x x] 2 1 Êœ œ ± œ ± œ ±œ 00 44 ÎÎ ## Î% ! ± # ab 1 1 4 4 # 15. c 0, d 2; V 2 dy 2 y y ( y) dy ± ± c0 d2 ± È shell shell radius height 2 y y dy 2 œ² œ ² ' 0 2 ’“ \$Î# # # !

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

## This note was uploaded on 04/17/2008 for the course MA 113 taught by Professor Massman during the Spring '08 term at Rose-Hulman.

### Page1 / 11

6.2-6.3 - 406 Chapter 6 Applications of Definite Integrals...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online