6.5-6practice

# 6.5-6practice - 430 Chapter 6 Applications of Definite...

This preview shows pages 1–5. Sign up to view the full content.

430 Chapter 6 Applications of Definite Integrals 46. (a) First, we note that y (distance from origin to AB) d a cos d d . œ± Ê œ ± Ê œ a sin a(sin cos ) ! !! !! ! ! ± Moreover, h a a cos . The graphs below suggest that œ² Ê œ œ ! ds i n c o s h a( cos ) cos a(sin cos ) ± ±± ± lim . ! Ä! sin cos 2 cos 3 ± ± ¸ (b) 0.2 0.4 0.6 0.8 1.0 f( ) 0.666222 0.664879 0.662615 0.659389 0.655145 ! ! 6.5 AREAS OF SURFACES OF REVOLUTION AND THE THEOREMS OF PAPPUS 1. (a) sec x sec x dy dy dx dx œÊ œ #% # Š‹ S 2 (tan x) 1 sec x dx Êœ ± 1 ' 0 4 1 Î È % (c) S 3.84 ¸ (b) 2. (a) 2x 4x dy dy dx dx 2 œ # S 2 x 1 4x dx ± 1 ' 0 2 # # È (c) S 53.23 ¸ (b)

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Section 6.5 Areas of Surfaces of Revolution and the Theorems of Pappus 431 3. (a) xy 1 x œÊœÊ œ ± Ê œ "" " # yd y y d y dx dx y # % Š‹ S 2 1 y dy Êœ ² 1 ' 1 2 " ±% y È (c) S 5.02 ¸ (b) 4. (a) cos y cos y dx dx dy dy œÊ œ # # S 2 (sin y) 1 cos y dy ² 1 ' 0 1 È # (c) S 14.42 ¸ (b) 5. (a) x y 3 y 3 x "Î# "Î# "Î# # ²œ Ê œ ± ˆ‰ 23 x x ± ± dy dx ˆ "Î# ±"Î# " # 13 x ± dy dx # ±"Î# # S 2 3 x 1 1 3x dx ± ²± 1 ' 1 4 É ab "Î# # ±"Î# # (c) S 63.37 ¸ (b) 6. (a) 1 y 1 y dx dx dy dy œ² Ê œ ² ±"Î# ±"Î# # # S2 y2y 1 1y d x ² ²² 1 ' 1 2 È É ±"Î# # (c) S 51.33 ¸ (b)
432 Chapter 6 Applications of Definite Integrals 7. (a) tan y tan y dx dx dy dy œÊ œ Š‹ # # S 2 tan t dt 1 tan y dy Êœ ± 1 '' 00 3y 1 Î È # 2 tan t dt sec y dy œ 1 1 Î (c) S 2.08 ¸ (b) 8. (a) x 1 x 1 dy dy dx dx œ² Ê œ ² È # # # S 2 t 1 dt 1 x 1 dx ² ± ² 1 11 5x È È È ab ## 2 t 1 dt x dx 1 È È # (c) S 8.55 ¸ (b) 9. y ; S 2 y 1 dx S 2 1 dx x dx œÊ œ œ ± ± œ x x dy dy dx dx 4 5 # # " " # ' a0 0 b4 4 Ê ˆ‰ É 1 È 4 5; Geometry formula: base circumference 2 (2), slant height 4 2 2 5 œœ œ œ ± œ 1 È 5 x % ! ’“ È È È # Lateral surface area (4 ) 2 5 4 5 in agreement with the integral value œ " # ÈÈ 10. y x 2y 2; S 2 x 1 dy 2 2y 1 2 dy 4 5 y dy 2 5 y œÊœ Ê œ œ ± œ ± œ œ xd x d x dy dy # # # # # ! ' c0 0 d2 2 1 1 Ê È cd 2 5 4 8 5; Geometry formula: base circumference 2 (4), slant height 4 2 2 5 œ œ ± œ 1 È È Lateral surface area (8 ) 2 5 8 5 in agreement with the integral value œ " # 11. ; S 2 y 1 dx 2 1 dx (x 1) dx x dy dy (x 1) dx dx 55 x ± œ ± œ ± œ ± "" # # # # # \$ ± # " ' a1 1 b3 3 Ê É # 3 1 (4 2) 3 5; Geometry formula: r 1, r 2, œ ± ² ± œ œ±œ 9 3 # # # # " " "# ±‘ È 1 slant height (2 1) (3 1) 5 Frustum surface area (r r ) slant height (1 2) 5 ± ² œ± œ ± È 3 5 in agreement with the integral value œ 1 È 12. y x 2y 1 2; S 2 x 1 dy 2 (2y 1) 1 4 dy 2 5 (2y 1) dy œ± Ê œ ²Ê œ œ ± œ ² ± œ ² x d x dy dy " # ' c1 1 2 1 Ê È È 2 5 y y 2 5 [(4 2) (1 1)] 4 5; Geometry formula: r 1, r 3, œ ² œ ²²² œ œ œ 1 È # # " slant height (2 1) (3 1) 5 Frustum surface area (1 3) 5 4 5 in agreement with ± ² œ ± œ È È the integral value

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Section 6.5 Areas of Surfaces of Revolution and the Theorems of Pappus 433 13. S 1 dx; dy dy dx 3 dx 9 9 9 xx 2 x x œÊ œ ± # %\$ % Š‹ É # ' 0 2 1 u 1 du x dx du dx; œ± Ê œ Ê œ x4 x 994 9 \$ " x 0 u 1, x 2 u œÊœ œÊ œ 25 9 S 2 u du u Äœ œ 1 ' 1 25 9 Î "Î# \$Î# " # #&Î* " 43 2 1 ±‘ 1 œ² œ œ 11 1 3 27 3 27 81 125 125 27 98 ˆ‰ ˆ ± 14. x dy dy dx dx 4x œ "" # ±"Î# # S 2 x 1 dx Êœ ± ' 34 15 4 Î Î 1 È É " 4x 2 x dx 2 x œ± œ ± ' 15 4 Î Î É ’“ \$Î# "&Î% \$Î% 4 2 1 ² ± œ ² 41 5 3 44 344 4
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### Page1 / 19

6.5-6practice - 430 Chapter 6 Applications of Definite...

This preview shows document pages 1 - 5. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online