{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

# Test1(KEY) - 2?“ TEST 1(Math 250 A(a Show that the...

This preview shows pages 1–2. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 2?“? TEST 1 (Math 250 A) (a) Show that the midpoint of P1 = (x1, 3’1) and P2 = (x2, y,) is given by: (20 pts) P : P1+P2 21:2: M 2 ’ 2 gay (Hint: Consider any of the tiiangles generated by the position vectors OB ,OP2 and 0PM) m; s”) ”.9 3,33% ng‘,,ovz Me: 0% PM Pu peg, New at: 2’3 , P; M {3,4 , Wmt ta ta? 0PM :{M‘If} We ”4: "I’m ‘ 5,2 W6? MOPVQ R “PM 7: Lag: ) bfg. PM 35 Th? Magnii‘PQP-wvi" feet) "“3 PM} My 9 ”3 PPPOPM: oP+PP 5§>té§m>§ : OPPWJQP’W}?,} yawn) ‘ t - , ‘- ‘i" L(XP§’§(<C‘P \x J M XWX; new!“ P 2 PM,» iii/2.) 16?, {W P “W {I 2, ' ”Em/1 ’ /7 (b) Use the above formula to ﬁnd the midpoint of f; = (1,—2) and P2 = (—3 ,4) . PafngpPPP :33? , 2. 2. (a) Find the equation of the line L through the points P1 = (1,0 ,—1) and P2 = (2,3 ,—1) . Does the point Q : (0,1,—1) lie onL ? (20 pts) P m?) we» .1, a :gg/ (Vi: Rig; 2:: DP; ”Gt" :(’ ,3, CD} is ﬂnwaaiieé ”in L {tiff y! “g“ ‘1 w (a «t: 3 i1 ’,, m __ p s @egfiﬂ ma: 9M1“: -—> P P; ﬁg, “3 Q «f: 54% LitﬁiQ~ 1:535: w, ““353 J "’ ’ /, Pi:—§ (b) Find the equation of the p1ane M that contains the point P: (1, —1,2) and the ﬁne L: x=t,y=t+1,z=—3+2t. PK” MP gig: ﬁx {I 3 w '3“: Ck Q Vi E” i g gag W “it: is} ‘”* .ﬁ ﬂ 3: [O in i f - ‘5 it “/y A; “WWW"? A m (zit/if {ii/f: PM a i {iv 1: i) R) V i: ,5 3 “”5" “Q 3: (i 1 7i; “’5 ,3 N ”' v“? M ””3 m e“? t” . e L, Q}? ”Q? 3: (i/ ”’ijg') M} £3 “E 63% ___‘ __,. V‘ WM: a»? W P . 3 33> PP, :-: a 2 5 e , '3” i 3/ 3W G P 5:; (13%,”"t 1.1 I (3,: 332,} g § § 2 3. The set RV = {x 6 IR 1 x 2 O} , equipped With the following addition and scalar multiplication: (20 pts) _ x + y 2 xy 2, ~ x = )c’1 becomes a vector space. In this vector space, ShOW that: (a)1+2=2 (b)0'2=l la” 21.; \$352; a? ,2 C922 :1 .29 t l 4. Let W = {p(x) 6 P2 [x] 1 p(3) = 0} . Show that Wis a subspace of Pix] . (10 pts) (Note: Wis the set of all quadratic polynomials that have 3 as a root) Let 533m ataxia} 6- M] 3:12? {55(43): t) SW35 \$1353} 3,; ti} 3 Mm; Lf’rtﬁlltfﬁl :3 ”’3’? al- iig {El 7: O + Q Q :3 [p M} ﬁx} 6 W Eulagg’. // 5. Let W = {A e M m (R) | det(A) = O} . Is Wa subspace of M M (R) ? (10 pts) If your answer is no, provide a counterexample. (Note: Wis the set of all non-invertible matrices) 5%} g5; mﬂgﬁ m Wawﬁgww: of ”ﬁaxaﬂl‘i} ) EECr 3; mod” QEQMME “”05““ “5”- Imdaad; tag-ﬂ A; 3(; g) )A,& :t (i; g?) Q W p is}; G; \A/ (has: d.c.'§"(i3uvh%}:§ \$43,} “Mt; Attﬁla:( // 6. Show that the vectors x2 +x3 ,x,2x2 +1,3 span the vector space P3[x] . (10 pts) ml ’Agﬁﬂ at}; a Agar: tr A§51%3+l) t— Llar"'i%:3 :: (singlet 53x24» ax 5r «<5 A ,3 a, 3 it. w l ,3 5 a, . ~X 33> Am 51% {at azﬁlgjx 5+ air a» SAM-am 345115553 ‘5" W "'5 C555 55 iii? 3 AUEZJQBJ‘EQ \$33?“ fl 3:5; , ‘ L 3% tgwl ’ a} A; :2 ME 39553 ‘3‘ 1‘35 ’33ng 9W“; Wetter” M Egg—“(:52 3 .rtlzca :3" \$ l\$ a thomk 0t” 1 1 1 0 Ma vervlﬁw Kan—x3; ><J 7. Show that the vectors A1 = 0 0 ,A2 = O 1 are linearly independentin M M (R) map; and *5" ”‘3‘ W‘ ~ M Q :32 3. L9” ”MM “5” «535% r" l a a} ﬂow) //. A 9 3 "’V w as; E if} x; .m A g 5;; E :3 gut/0o) “in “mile? tg5”l:eb<3,i ”3 fair “i \$l2 :5“) :5, £533 £3 A %!+:§z :3 O \ .Q—/: i {5;} 9:2,. ‘2 {.35 a; J (A! W Q j 322:} T)” m: A?“ 7:: Q a r 3%; j a 3‘ /// ...
View Full Document

{[ snackBarMessage ]}