{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

# cal067 - arthe statement is true or false If it is trua...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: arthe statement is true or false. If it is trua, explain why. . why or give an example that disproves the statement. ‘to-o‘ne, with domain IR, then f‘1(f(5)) = 5. etc—one and differentiable,with domain IR, then '- 1/f’(6). 011 f (x) = COS X. —7T/2 \$ x \$ 77/ 2, is one-to-one. = 377/4 1 V b,thenlna < lnb. ‘1n1r 1 ways divide by e". db > O,then1n(a + b) = 111a + lnb. en (In x)6 = 6 111 x. of f is shown. Is f one-to-one? Explain. )7 se fis One-to-one, f0) = 3, and f'(7) = 8. Find (”1(3) and (b) <f“)’(3). x+1 2x+1' . ”the inverse function of f (x) = jketch a rough graph of the function without using a r. 7 5" — 1 6. y = —e"‘ __..TﬂllE-’FH|.5E IIIIIZ “ 10. % (10x) = nox-l d 1 II. Eﬂn 10) — 10 I2. The‘inverse function of y = e” is y = éln x. 1 I3. cos”): = cos x 15. cosh x 2 1 for all x dx I7.f16—=31n2 2 x tanx seczx I8. lim —= lim x_.,.— 1 — cosx x—W- sinx “EXEHEIEEE . 7. y = —1nx 9. y = 2 arctanx n u u u u u - —1 I4. tan—1x = Sin—1x cos x 1 10 dx 6. ln— = — — I 10 II x = so 8. y = ln(x — 1) n a n u n I: I0. Let a > 1. For large values of x, which of the functions y = x“, y = a", and y = logax has the largest values and which has the, smallest values? 11—12 Ill] Find the exact value of each expression. II. (a) e21113 I2. (a) 1n e” n a u a u a 13—20 |||l Solve the equation for x. I3. lnx =% 15. e"= 17 I7. 1n(x, + 1) +1n(,x — 1) = 1 I9. tan“): = 1 n n u u n u 2I-47 IIII Differentiate. 21. f(l,)=t21nt 23. h-(G) = em“ 25. y = 1n|sec5x + tan5x| 27. y = e”‘(,c sinx — cos x) 29. y = ln(seczx) 1/): 31. y = xe— 33. y = 2-" (b) log1025 + log104 (b) tan(arcsin %) n u n n n 1: I4. ex =§ I6. 1n(1 + e“) = 3 I8. log5(c") = d 20. sinx = 0.3 e! 22. g(t) — 1+ 3’ 24. MM) = 10“; 26. y = (3"(1‘2 — 21‘ + 2) 28. y = sin—Xe”) 30. y = 1n(xze") 32. y = acre”c 34. y = em)” + cos(e") ...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online