Operasi pada matriks - dengan skalar dapat dituliskan di...

Info icon This preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon
Operasi pada matriks pada dasarnya sama dengan operasi-operasi matematika pada umumnya, operasi pada matriks antara lain: Penjumlahan Matriks Penjumlahan matriks hanya dapat dilakukan terhadap matriks-matriks yang mempunyai ukuran (orde) yang sama. Jika A=(aij) dan B=(bij) adalah matriks-matriks berukuran sama, maka A+B adalah suatu matriks C=(cij) dimana (cij) = (aij)+(bij) atau [A]+[B] = [C] mempunyai ukuran yang sama dan elemennya (cij) = (aij) + (bij) Contoh: A+C tidak terdefinisi (tidak dapat dicari hasilnya) karena matriks A dan matriks B mempunyai ukuran yang berbeda Pengurangan Matriks Sama seperti pada penjumlahan matriks, pengurangan matriks hanya dapat dilakukan pada matriks-matriks yang mempunyai ukuran yang sama. Jika ukurannya berbeda maka matriks hasil tidak terdefinisikan. Contoh: Perkalian Matriks dengan Skalar Jika k adalah suatu bilangan skalar dan A=(aij) maka matriks kA(kaij) yaitu suatu matriks kA yang diperoleh dengan mengalikan semua elemen matriks A dengan k. Mengalikan matriks
Image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 2
Image of page 3
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: dengan skalar dapat dituliskan di depan atau dibelakang matriks. Misalnya [C]=k[A]=[A]k dan (c ij ) = (ka ij ) Pada perkalian matriks dengan skalar berlaku hukum distributif dimana k(A+B)=kA+kB Contoh: Perkalian Matriks dengan Matriks Beberapa hal yang perlu diperhatikan: 1. Perkalian matriks dengan matriks umumnya tidak komutatif 2. Syarat perkalian adalah jumlah banyaknya kolom pertama matriks sama dengan jumlah banyaknya baris matriks kedua 3. Jika matriks A berukuran mxp dan matriks pxn maka perkalian A*B adalah suatu matriks C=(cij) berukuran mxn dimana Contoh Beberapa Hukum Perkalian Matriks: 1. Hukum Distributif, A*(B+C) = AB + AC 2. Hukum Assosiatif, A*(B*C) = (A*B)*C 3. Tidak Komutatif A*B B*A 4. Jika A*B = 0, maka beberapa kemungkinan 1. A = 0 dan B = 0 2. A = 0 atau B = 0 3. A 0 dan B 5. Bila A*B = A*C, belum tentu B = C...
View Full Document

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern