Lecture Note Mat Diskrit S1 - LECTURE NOTES MATEMATIKA...

Info icon This preview shows pages 1–5. Sign up to view the full content.

View Full Document Right Arrow Icon
LECTURE NOTES MATEMATIKA DISKRIT Disusun Oleh : Dra. D. L. CRISPINA PARDEDE, DEA. JURUSAN TEKNIK INFORMATIKA UNIVERSITAS GUNADARMA PONDOK CINA, MARET 2004 0
Image of page 1

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
DAFTAR ISI DAFTAR ISI .............................................................................................................................. 1 BAB I STRUKTUR ALJABAR ......................................................................................... 2 1.1. OPERASI BINER ............................................................................................................ 2 1.2. SIFAT OPERASI BINER ................................................................................................. 3 1.3. SISTEM ALJABAR SATU OPERASI ............................................................................ 5 1.3.1. SEMIGROUP ........................................................................................................... 5 1.3.2. MONOID .................................................................................................................. 5 1.3.3. GROUP ..................................................................................................................... 6 1.3.4. SUBGROUP ............................................................................................................. 7 1.3.5. SUBGROUP SIKLIK ................................................................................................ 7 1.3.6. SUBGROUP NORMAL ............................................................................................ 8 1.4. SISTEM ALJABAR DUA OPERASI ........................................................................... 10 1.4.1. RING ....................................................................................................................... 10 1.4.2. FIELD ..................................................................................................................... 11 1.4.3. SUBRING ............................................................................................................... 12 BAB II KOMBINATORIK ................................................................................................... 13 2.1. PERMUTASI DAN KOMBINASI ................................................................................ 13 2.2. KOMBINASI PADA HIMPUNAN DENGAN PENGULANGAN .............................. 15 BAB III PRINSIP INKLUSI DAN EKSKLUSI ................................................................. 17 BAB IV FUNGSI DISKRIT NUMERIK ............................................................................ 23 4.1. FUNGSI NUMERIK ..................................................................................................... 23 4.2. MANIPULASI FUNGSI NUMERIK ............................................................................ 24 BAB V RELASI REKURENSI LINIER BERKOEFISIEN KONSTAN ........................ 27 5.1. SOLUSI DARI RELASI REKURENSI ........................................................................ 28 5.2. SOLUSI HOMOGEN DARI RELASI REKURENSI ................................................... 30 5.3. SOLUSI KHUSUS DARI RELASI REKURENSI ....................................................... 33 BAB VI FUNGSI PEMBANGKIT ..................................................................................... 35 DAFTAR PUSTAKA .............................................................................................................. 38 1
Image of page 2
Pertemuan Ke-1 BAB I STRUKTUR ALJABAR Sebuah sistem dimana terdapat sebuah himpunan dan satu atau lebih dari satu operasi n-ary, yang didefinisikan pada himpunan tersebut, dinamakan sistem aljabar. Selanjutnya, sebuah sistem aljabar akan dinyatakan dengan (S,f 1 ,f 2 ,f 3 ,...,f n ) dimana S sebuah himpunan tidak kosong dan f 1 , f 2 , .... , f n operasi-operasi yang didefinisikan pada S. Sebagai contoh, (Z,+) adalah sebuah sistem aljabar yang dibentuk oleh himpunan bilangan bulat Z dan operasi penjumlahan biasa ; (Z,+,x) adalah sebuah sistem aljabar yang dibentuk oleh himpunan bilangan bulat dan dua buah operasi biner. Sistem aljabar yang termasuk dalam pokok bahasan Matematika Diskrit yang akan diberikan adalah sistem aljabar satu operasi biner dan sistem aljabar dua operasi biner. Sebelum melihat jenis-jenis sistem aljabar dan konsep-konsep yang berkaitan dengannya, kita akan tinjau lebih dahulu operasi biner dan sifat-sifat operasi biner. 1.1. OPERASI BINER Operasi biner pada himpunan tidak kosong S adalah pemetaan dari S x S kepada S. Notasi yang digunakan untuk menyatakan operasi biner adalah +, x, , , , , dan sebagainya. Hasil dari sebuah operasi, misalnya , pada elemen a dan b akan ditulis sebagai a b. Contoh 1.1. Operasi berikut adalah beberapa contoh operasi biner : -. Operasi pembagian pada bilangan riil. -. Warna rambut anak yang ditentukan oleh warna rambut orang tuanya. -. Operasi biner yang didefinisikan sebagai a b = a + b – 2ab. 2
Image of page 3

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
1.2. SIFAT OPERASI BINER Sifat-sifat yang dimiliki oleh sebuah sistem aljabar nantinya ditentukan oleh sifat-sifat yang dimiliki oleh setiap operasi di dalam sistem aljabar tersebut. Berikut akan diuraikan sifat-sifat yang dapat dimiliki oleh sebuah operasi biner. Misalkan dan adalah operasi biner. Operasi dikatakan : -. KOMUTATIF , jika a b = b a, untuk setiap a, b. -. ASOSIATIF, jika (a b) c = a (b c), untuk setiap a, b, c.
Image of page 4
Image of page 5
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern