This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: , so  T ±  = 3 5 . Thus, N = T ±  T ±  = ± , sin t,cos t ² = ± , 1 , ² . 7. B = T × N = ¿ 4 5 , ,3 5 ± × ± , 1 , ² = ¿ 3 5 , , 4 5 ± 8. The curvature κ =  T ±   r ±  = 3 25 9. The velocity v = r ± = ± 4 ,3 cos t,3 sin t ² = ± 4 , ,3 ² . The acceleration a = r ±± = ± , 3 sin t,3 cos t ² = ± , 3 , ² . 10. The tangential component of acceleration at t = π 2 is given by a T = a · T = ± , 3 , ² · ¿ 4 5 , ,3 5 ± = 0 The normal component of acceleration at t = π 2 is given by a N = a · N = ± , 3 , ² · ± , 1 , ² = 3 Bonus: Z 11 › e t , et , 1 ﬁ dt = £› e t ,et , t ﬁ/ 11 = › ee1 , ee1 , 2 ﬁ . Page 2...
View
Full Document
 Spring '08
 Bales
 Calculus, Equations, Parametric Equations, Acceleration, Cos, dt

Click to edit the document details