{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

FINAL FORMULAS

# FINAL FORMULAS - ARC LENGTH S=r DEGREES TO RADIANS...

This preview shows pages 1–2. Sign up to view the full content.

Horizontal Rect: y= b Polar: r sin = θ b Vertical Rect: x= a Polar: r cos = θ a Line through pole Rect: Y=(tan α )x Polar: = θ α Passing thru pole tangent to pol. Axis radius = a Rect: x 2 +y 2 =±2 a y a>0 Polar: r = ±2 a sin θ a>0 Passing thru pole tangent to π2 in pol radius = a Rect: x 2 +y 2 =±2 a x a>0 Polar: r = ±2 a cos θ a>0 Center at pole radius = a Rect: x 2 +y 2 =a 2 a>0 Polar: r =a a>0 Where a >0 Where a >0, b >0, and a > b Where a >0, b >0, and a < b ARC LENGTH S= r θ DEGREES TO RADIANS 1degree= π180 radian 1 radian = 180π degrees AREA OF A SECTOR A= 12r 2 θ ANGULAR/LINEAR SPEED = ω θt : angular speed v=r : linear speed ω SINUSOIDAL EQUATIONS y=A sin ( x- )+B ω φ A=amplitude Period=T= 2πω Vertical shift= B Phase shift= L if <0 R if >0 φω φ φ IDENTITIES sin 2 +cos θ 2 = 1 θ tan = θ sinθcosθ tan +1 = sec θ 2 θ cot 2 +1 = csc θ 2 θ cot = θ cosθsinθ SUM/DIFFERENCE cos( π - 2 )= sin sin θ θ ( - π2 )=cos θ θ cos( + )=cos cos -sin sin α β α β α β cos( )=cos cos +sin sin α β α β α β sin( + )= sin cos + cos sin α β α β α β sin(

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}