{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

FTFS Chap17 P001 - Chapter 17 Steady Heat Conduction...

Info icon This preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon
Chapter 17 Steady Heat Conduction Chapter 17 STEADY HEAT CONDUCTION Steady Heat Conduction In Plane Walls 17-1C (a) If the lateral surfaces of the rod are insulated, the heat transfer surface area of the cylindrical rod is the bottom or the top surface area of the rod, 4 / 2 D A s . (b) If the top and the bottom surfaces of the rod are insulated, the heat transfer area of the rod is the lateral surface area of the rod, A DL . 17-2C In steady heat conduction, the rate of heat transfer into the wall is equal to the rate of heat transfer out of it. Also, the temperature at any point in the wall remains constant. Therefore, the energy content of the wall does not change during steady heat conduction. However, the temperature along the wall and thus the energy content of the wall will change during transient conduction. 17-3C The temperature distribution in a plane wall will be a straight line during steady and one dimensional heat transfer with constant wall thermal conductivity. 17-4C The thermal resistance of a medium represents the resistance of that medium against heat transfer. 17-5C The combined heat transfer coefficient represents the combined effects of radiation and convection heat transfers on a surface, and is defined as h combined = h convection + h radiation . It offers the convenience of incorporating the effects of radiation in the convection heat transfer coefficient, and to ignore radiation in heat transfer calculations. 17-6C Yes. The convection resistance can be defined as the inverse of the convection heat transfer coefficient per unit surface area since it is defined as R hA conv 1/ ( ) . 17-7C The convection and the radiation resistances at a surface are parallel since both the convection and radiation heat transfers occur simultaneously. 17-8C For a surface of A at which the convection and radiation heat transfer coefficients are h h conv rad and , the single equivalent heat transfer coefficient is h h h eqv conv rad when the medium and the surrounding surfaces are at the same temperature. Then the equivalent thermal resistance will be R h A eqv eqv 1/ ( ) . 17-9C The thermal resistance network associated with a five-layer composite wall involves five single- layer resistances connected in series. 17-10C Once the rate of heat transfer Q is known, the temperature drop across any layer can be determined by multiplying heat transfer rate by the thermal resistance across that layer, T QR layer layer 17-1
Image of page 1

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Chapter 17 Steady Heat Conduction 17-11C The temperature of each surface in this case can be determined from ( ) / ( ) ( ) / ( ) Q T T R T T QR Q T T R T T QR s s s s s s s s         1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 where R i  is the thermal resistance between the environment and surface i.
Image of page 2
Image of page 3
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern