{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

chapter05_handouts - William Stallings Data and Computer...

Info icon This preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon
William Stallings Data and Computer Communications 7 th Edition Chapter 5 Signal Encoding Techniques Encoding Techniques Digital data, digital signal Analog data, digital signal Digital data, analog signal Analog data, analog signal Digital Data, Digital Signal Digital signal Discrete, discontinuous voltage pulses Each pulse is a signal element Binary data encoded into signal elements Terms (1) Unipolar All signal elements have same sign Polar One logic state represented by positive voltage the other by negative voltage Data rate Rate of data transmission in bits per second Duration or length of a bit Time taken for transmitter to emit the bit Terms (2) Modulation rate Rate at which the signal level changes Measured in baud = signal elements per second Mark and Space Binary 1 and Binary 0 respectively Interpreting Signals Need to know Timing of bits - when they start and end Signal levels Factors affecting successful interpreting of signals Signal to noise ratio Data rate Bandwidth
Image of page 1

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Comparison of Encoding Schemes (1) Signal Spectrum Lack of high frequencies reduces required bandwidth Lack of dc component allows ac coupling via transformer, providing isolation Concentrate power in the middle of the bandwidth Clocking Synchronizing transmitter and receiver External clock Sync mechanism based on signal Comparison of Encoding Schemes (2) Error detection Can be built in to signal encoding Signal interference and noise immunity Some codes are better than others Cost and complexity Higher signal rate (& thus data rate) lead to higher costs Some codes require signal rate greater than data rate Encoding Schemes Nonreturn to Zero-Level (NRZ-L) Nonreturn to Zero Inverted (NRZI) Bipolar -AMI Pseudoternary Manchester Differential Manchester B8ZS HDB3 Nonreturn to Zero-Level (NRZ-L) Two different voltages for 0 and 1 bits Voltage constant during bit interval no transition I.e. no return to zero voltage e.g. Absence of voltage for zero, constant positive voltage for one More often, negative voltage for one value and positive for the other This is NRZ-L Nonreturn to Zero Inverted Nonreturn to zero inverted on ones Constant voltage pulse for duration of bit Data encoded as presence or absence of signal transition at beginning of bit time Transition (low to high or high to low) denotes a binary 1 No transition denotes binary 0 An example of differential encoding NRZ
Image of page 2
Image of page 3
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern