Unformatted text preview: +1 x n ± ± ± ± = L > 1 . Follow the steps (i)–(iii) below to prove that ( x n ) is unbounded, and hence divergent. (i) Prove that for any r < L , there is N r ∈ N such that ∀ n ≥ N ,  x n +1  > r  x n  . (ii) Fix a real r ∈ (1 ,L ) and let N r be as in part (a). Using mathematical induction prove that for all n ≥ N r ,  x n  ≥ r nN r  x N r  . (iii) Conclude that ( x n ) is unbounded, and hence divergent....
View
Full Document
 Spring '08
 JUNGE
 Math, lim, elementary real analysis, nonzero reals, lim yn

Click to edit the document details