This preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentThis preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentThis preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: .. A04/OLL/Ol . Use T.C. 16s MATH 2451 thqr04 Exam Multivariable Calculus Course 2016—0202 (Tue) McCary Due Date
Instructor Net ID ﬁvmwﬂ mnueeeeaee ®©@[email protected] F \ (k ®@@@@® )\
@ﬁ 1 .x. J
hawmw Q “we @ mm. C @ ® ® PM» W lieeaessssseesa @©@@@@ @@®® [email protected]® {\le .esst L®®@®@® w®®®® E®©® (K. @ a} A J.
.I\ N
mw @®@®[email protected]®m .\ ./....\ Awe .,.,.. Y
n @ \ : A“ eat NW,( émﬁgé t©®0®@®@®@@®@ ,. A. t. @@ n.1,. [email protected]@®@@®@ ®3®@®®@ Nix... y\
@ﬁ@@ r x
;@ (Last Name) 19 2016—0126 14 .. AO4/0LL/02 . ' Let A C R" be open, let if E R”, and recall the deﬁnition of the translation of a set= 55 + A = {55 + if I g E A}
) Show that :35 + A is open Lg/Efﬂffj/ . [3k é IP14
Q IA x i G ’7.” .// A H2 >< nil .7
Show (75,32) X (—5, E) is open in RZLJLJZ 1,:"1‘Jr7L/ ‘
thy ,"r ‘ :‘(j‘s‘I ‘ .——.‘
w / Q” } \‘7’ p
o In; OWE; ' J
‘P f .5 {k T :rnZTéE/P'IV *3"! Olga—N
 /
‘ \.
J / k 44? a} $Grader0nly¢
O 06) o .. AO4/OLL/OL . .. ( 10 points) Find the natural domain of f , and plot this domain on the provided axis. fa) J, Grader Only J, J x.» .0 AO4/OLL/04 O 3. (10 points) This question is related to the derivation of the sum of a geometric series from Calculus II: 1 0C
27‘": 1—?” for r§ <1
k=0 You should go review your Calculus II text (or Wikipedia) to make sure you are familiar with this important technique.
Let B be the matrix given below. (a) Compute the matrix R such that B = I  R. ‘3' r. _  \
" (b) Cpmpute every positive integer power of R.’ That is, compute R, R2, R3, 124%”. . .. ,1
m (c) (Pompute the inﬁnite sum S = I + R + R2 + R3 + R4 + . . .. \\_/‘
(d) After reviewing the geometric sum ﬁom Calculus II, and with the above parts, you now have enough to determine
3—1, 50 what iS 3—1 and K \ I' if? __ é , r/x: ‘I Yn/KF ‘ .l J x «I»: If, ‘v ‘ */ 1117 /‘T 6,—1 f f} I ' / ‘1":5‘ l e 5 /\ “r” *
B: 0 1 5 '0’ /
O 0 1 , ,
,zf. ,,=
. — 50~g—£;i c9 03"} in I;  q ’05:— .. — A ’n‘ ‘. r ' f
0 c? 0 :2 a q v r”
O L/ L) j“ Hi ‘ I ' .. N“ . ‘
k / “if ,1 j ”' ./" ' “VT—T 4 i , . * u ‘/
 '"i f‘ u r rm — J ‘
J'““" I r
I ‘3 _ K“ Ki 1‘\/ I. J ’ — 7
i/(I ' _ k l / i J L — ' 7— ‘ '[7 1 i  if “ti / _ UL”: ——' l , 1;; i“ "If y  ‘ {r x/ ._ f ‘ A "I —’ ' 7 ' l /__r I a“) l .. . I j, T ’1'
ii I"?! 4 2L]; {3 _: v/i til/iii 1 00 6‘ ~ 4 f 1 r: u ; a, i .921" A:// l 1
' D I 5 r; —' ,ﬁ 1 C; . ‘ ,—— , 'd—u r " L1 ,ﬂ") :1 v /‘ _ V L {a i if
r. '—_}_ ‘ _ z / i ‘
f i \ — i . L)! T ‘ I‘m/I , J} + I H, 1 k . * Q Q 3: [I 0 J I I S // n .L
'9 9 ~ % ‘0 J (:15 ‘ 2 if / a in
~ 4 v J '. ' /‘ 3' i GraderOnly J, O O
o
(a
e .. A04/0LL/05 . ( 10 points) 15, 6 is not required — use limit techniques from scalar calculus. ,3 (a) You may not use derivative — you must calculate it directly. “ . W ‘ r :
x m j’il’ﬂ if ‘ r? in
f ( _ f ( ) ("1 ‘l‘ ;i‘/X{J ‘ \ I /
9—49 3:392 2 M. lim
_ . h—m _.h where f ( / \ ﬂ ' r' [I .4 ': _"_ ' V ' ' . ' ) 5 " ‘ r ’4 I I
x , _  r , ,' " —*** V  '__ ‘ ‘ __V , (b) Compute the following limit by converting to spherical coordinates.  351927 I? ' { 7 ,N _ . K ' "
hm 0 $2 + 9.2 + 22 "_ l‘fl/ l. ag/jé’ “"1 F" I M ‘ U U U” 7“ “f . ‘ ‘ I: _ x“ ‘3 F—tya F
—> 0 ,l l
y fl , / L r ‘ (
z 0 5/ W '4 “v ~ 'k ~+ r
v. " J"
i r, i. 5‘
= m j” J , 13 r‘ I 3’” J
V {fl/La { 1‘233M5‘yc u n/
{a ’/C,/ / 9/ l, GraderOnlyJ,
. O® @@@@@[email protected]@® . J CI .0 AO4/0LL/06 . 5. (10 points) Ungraded questions which you should be familiar with. 1. With 5,6.
:62
lim
I 1 sc+y
y _} 2
2. With 5,6.
lim 5x2 ...
View
Full Document
 Summer '09
 EYDELZON

Click to edit the document details