Spare part forecasting

Spare part forecasting - UNIVERSITA DEGLI STUDI DI PADOVA...

  • Notes
  • 80
  • 100% (1) 1 out of 1 people found this document helpful

Info icon This preview shows pages 1–3. Sign up to view the full content.

UNIVERSITA’ DEGLI STUDI DI PADOVA FACOLTA’ DI INGEGNERIA DIPARTIMENTO DI TECNICA E GESTIONE DEI SISTEMI INDUSTRIALI CORSO DI LAUREA IN INGEGNERIA GESTIONALE TESI DI LAUREA TRIENNALE FORECASTING METHODS FOR SPARE PARTS DEMAND Relatore: Ch.mo Prof. Maurizio Faccio Correlatore: Dott. Ing. Fabio Sgarbossa Laureando: Andrea Callegaro Matricola: 580457 ANNO ACCADEMICO 2009/2010
Image of page 1

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

2 INDEX Summary ………………………………………………………………….…………... 4 Introduction …………………………………………………………………………... 5 Chapter 1 - Analysis of spare parts and spare parts demand ……………….. 7 1.Introduction…………………………………………………………………………… 7 2.Spare parts features…………………………………………………………………. 8 3.Spare parts demand and classifications…………………………………………… 9 3.1. Analytic Hierarchy Process……………………………………………… 12 4.Annexed costs………………………………………………………………………… 13 Chapter 2 - An overview of literature on spare parts demand forecasting methods ………………………………………………………………………………… 15 1.Introduction…………………………………………………………………………… 15 2.Forecasting methods in the scientific literature…………………………………… 15 3.Explanation of forecasting methods………………………………………………... 23 3.1.Single exponential smoothing …………………………………………… 23 3.2.Croston’s method………………………………………………………….. 23 3.3.Syntetos – Boylan Approximation ………………………………………. 24 3.4.Moving Average …………………………………………………………… 25 3.5.Weighted moving average………………………………………………... 26 3.6.Additive and multiplicative winter………………………………………… 26 3.7.Bootstrap method………………………………………………………….. 27 3.8.Poisson method …………………………………………………………… 28 3.9.Binomial method………………………………………………………… .... 29 3.10.Grey prediction model………………………………………………… .... 30 3.11.ARMA(p,q) ARIMA(p,d,q) S-ARIMA(p,d,q)(P,D,Q)s………………… 31 3.12.Neural networks………………………………………………………….. 33 4.Benchmarks…………………………………………………………………………… 34 4.1.MAPE……………………………………………………………………….. 34 4.2.S-MAPE…………………………………………………………………….. 35 4.3.A-MAPE…………………………………………………………………….. 35 4.4.RMSD……………………………………………………………………….. 36
Image of page 2
Image of page 3
This is the end of the preview. Sign up to access the rest of the document.
  • Fall '15
  • Engr. Markus Obenharm
  • Croston

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern