This** preview**
has intentionally

**sections.**

*blurred***to view the full version.**

*Sign up*
This** preview**
has intentionally

**sections.**

*blurred***to view the full version.**

*Sign up*
This** preview**
has intentionally

**sections.**

*blurred***to view the full version.**

*Sign up*
**Unformatted text preview: **ν ( x ) , where J ν ( x ) = ∑ n = ∞ (− 1 ) n n! Г ( 1 + ν + n ) ( x 2 ) 2 n + ν and J − ν ( x ) = ∑ n = ∞ (− 1 ) n n! Г ( 1 − ν + n ) ( x 2 ) 2 n − ν are Bessel’s functions, Г ( x )= ∫ ∞ t x − 1 e − t dt . Example. 1. The solution of the equation x 2 y ' ' + x y ' + ( x 2 − 1 4 ) y = is y = C 1 J 1 2 ( x ) + C 2 J − 1 2 ( x ) , because ν 2 = 1 4 and ν = 1 2 . 2. The general solution of Legendre’s equation is y = C 1 y 1 ( x ) + C 2 y 2 ( x ) , where...

View
Full Document

- Fall '15
- Linear Algebra, Algebra, Complex differential equation, Regular singular point