121616949-math.107 - x f x is a local minimum if there is...

Info icon This preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
5 Curve Sketching Whether we are interested in a function as a purely mathematical object or in connection with some application to the real world, it is often useful to know what the graph of the function looks like. We can obtain a good picture of the graph using certain crucial information provided by derivatives of the function and certain limits. A local maximum point on a function is a point ( x, y ) on the graph of the function whose y coordinate is larger than all other y coordinates on the graph at points “close to” ( x, y ). More precisely, ( x, f ( x )) is a local maximum if there is an interval ( a, b ) with a < x < b and f ( x ) f ( z ) for every z in ( a, b ). Similarly, ( x, y ) is a local minimum point if it has locally the smallest y coordinate. Again being more precise: (
Image of page 1
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: x, f ( x )) is a local minimum if there is an interval ( a, b ) with a < x < b and f ( x ) ≤ f ( z ) for every z in ( a, b ). A local extremum is either a local minimum or a local maximum. Local maximum and minimum points are quite distinctive on the graph of a function, and are therefore useful in understanding the shape of the graph. In many applied problems we want to find the largest or smallest value that a function achieves (for example, we might want to find the minimum cost at which some task can be performed) and so identifying maximum and minimum points will be useful for applied problems as well. Some examples of local maximum and minimum points are shown in figure 5.1 . 93...
View Full Document

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern