Unformatted text preview: 11 x + 1 = 10 = 1 . Thus the sequence converges to 1. EXAMPLE 10.6 Determine whether ‰ ln n n ± ∞ n =1 converges or diverges. If it converges, compute the limit. We compute lim x →∞ ln x x = lim x →∞ 1 /x 1 = 0 , using L’Hˆopital’s Rule. Thus the sequence converges to 0. EXAMPLE 10.7 Determine whether { (1) n } ∞ n =0 converges or diverges. If it converges, compute the limit. This does not make sense for all real exponents, but the sequence is easy to understand: it is 1 ,1 , 1 ,1 , 1 . . ....
View
Full Document
 Spring '07
 JonathanRogawski
 Math, Calculus, Topology, Squeeze Theorem, Limit, lim, Limit of a sequence

Click to edit the document details