Unformatted text preview: and twelve terms, which give 0 . 737 and 0 . 653, so correct to one place the value is 0 . 7. Exercises Determine whether the following series converge or diverge. 1. ∞ X n =1 (1) n1 2 n + 5 ⇒ 2. ∞ X n =4 (1) n1 √ n3 ⇒ 3. ∞ X n =1 (1) n1 n 3 n2 ⇒ 4. ∞ X n =1 (1) n1 ln n n ⇒ 5. Approximate ∞ X n =1 (1) n1 1 n 3 to two decimal places. ⇒ 6. Approximate ∞ X n =1 (1) n1 1 n 4 to two decimal places. ⇒ 10.5 Comparison Tests As we begin to compile a list of convergent and divergent series, new ones can sometimes be analyzed. EXAMPLE 10.31 Does ∞ X n =2 1 n 2 ln n converge?...
View
Full Document
 Spring '07
 JonathanRogawski
 Math, Calculus, Numerical Analysis, Approximation, Mathematical Series, Summation

Click to edit the document details