slide1 - Course Materials Text: Applied Probability and...

This preview shows pages 1–8. Sign up to view the full content.

1 Course Materials Text:  Applied Probability and Statistics for  Engineers by D.C.Montgomery and  Blackboard: Announcements Lecture notes Homeworks and solutions, and more…

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
2 Course Outline Probability Review Parameter Estimation Hypothesis Testing, Statistical Inference Regression and Correlation Analysis of Variance Non-Parametric Statistics Statistical Quality Control
3 Probability Review  Laws of Probability:  P(A)   1 If A,B are m.e., then P(A B) = P(A) + P(B) If A,B are independent, then P(A B) =  P(A).P(B) For any B and A,  P(B)= P(B|A).P(A) + P(B| A’).P(A’)  P(A B)= P(A|B).P(B).  By extension,  Bayes’ Law: P(A|B) = P(A).P(B|A) / P(B)

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
4 Probability Example  Suppose you have an audience of 30  people whose birthdays are  independent and uniformly distributed You want to bet \$20 that there are at  least two people in the room with  identical birthdays What are your odds of winning?
5 The Binomial Distribution Four basic properties: Consists of n trials Each trial has exactly two m.e. outcomes,  A and B The probability of A takes the same value,  p, on all trials The n trials are independent of each other

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
6 The Binomial Dist cont… X = number of times that event A comes  up over the n trials of the binomial  process P(X=k) =    .p k .(1 – p) n–k where      = n! / (k!(n–k)!) k n k n
7 Example Each sample of air has a 10% chance  of containing a particular rare molecule.  Assume the samples are independent  with regard to the presence of the rare

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 02/26/2008 for the course IE 121 taught by Professor Perevalov during the Spring '08 term at Lehigh University .

Page1 / 28

slide1 - Course Materials Text: Applied Probability and...

This preview shows document pages 1 - 8. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online