{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

02.28.08_Page_2

# 02.28.08_Page_2 - Divergent so ELIdx diverges x lim mi ml H...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Divergent so ELIdx diverges! x _ lim mi ml H If we didn’t notice that the above integral is improper then 3 0 ildx=1n|x—1lj=1n2—1n1=1n2 Which is WRONG x- What type of integral is this? TypeI Ime'xdx=lim te'xdx=lim —e-x l;]=1im l—e't]=1 0 fans 0 tam tam oo 2 0 2 DD 2 I xe'x dx 2] xe'x dx+I xe'”C dxz no em 0 = lim [L0 xe'xza'x] + lim (:[xe'xzdx] raise tam = lim [—le'xz S]+ lim [—le'xz g] faim 2 tam 2 . 1 l 42 . 1 42 1 =11m ——+—e +11m ——e +— t—>—w 2 2 t—wo 2 2 Comparison Theorem Suppose f and g are continuous functions with f (x) 2 g(x) Z 0 for x 2 a a) If I50 f (x)dx is convergent then Img(x)dx is convergent b) If Ibo g(x)dx is divergent; then r f (3005K is also divergent Diagram 4 —dx—? ml 3 ‘1 J-l +xe ...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online