Chapter4_all - PHY4604 R. D. Field Quantum Mechanics in...

Info iconThis preview shows pages 1–4. Sign up to view the full content.

View Full Document Right Arrow Icon
PHY4604 R. D. Field Department of Physics Chapter4_1.doc University of Florida Quantum Mechanics in Three Dimensions Schrödinger Equation: In three dimensional space we have dt t r d i t r H op ) , ( ) , ( r h r Ψ = Ψ where ) ( ) ) ( ) ( ) (( 2 1 ) ( 2 1 2 2 2 2 r V p p p m r V p m H op z op y op x op op r r + + + = + = and x i p op x = h ) ( y i p op y = h ) ( z i p op z = h ) ( Thus Schrödinger’s equation becomes dt t r d i t r r V t r m op ) , ( ) , ( ) ( ) , ( 2 2 2 r h r r r h Ψ = Ψ + Ψ where 2 op is the Laplacian operator 2 2 2 2 2 2 2 z y x op + + = and 2 2 2 op op p = h . Stationary State Solutions: The stationary state solutions are of the form h r r / ) ( ) , ( iEt e r t r = Ψ ψ and the time independent equation is ) ( ) ( ) ( ) ( 2 2 2 r E r r V r m op r r r r h = + . Canonical Commutation Relations: It is easy to see that 0 ] ) ( , ) [( 0 ] ) ( , ) [( ] ) ( , ) [( = = = op j op i op j op i ij op j op i x x p p i x p δ h where δ ij is the Kroenecker delta function (i = 1,2,3 j = 1,2,3 δ ij = 0 if i j and δ ij = 1 if i = j, p 1 = p x , p 2 = p y , p 3 = p z , x 1 = x, x 2 = y, x 3 = z) and i op i x i p = h ) ( . Probability Density: The probability density is 2 | ) , ( | ) , ( t r t r r v Ψ = ρ and the probability of finding the particle between r r and r d r r r + at time t is r d t r 3 ) , ( v with 1 ) , ( 3 = allspace r d t r v .
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
PHY6404 R. D. Field Department of Physics Chapter4_2.doc University of Florida The Angular Momentum Operator (1) The Momentum Operator in 3 Dimensions: In “position space” with Cartesian coordinates we have z i p y i p x i p op z op y op x = = = h h h ) ( ) ( ) ( and 2 2 2 2 2 2 ) ( ) ( ) ( ) ( op op z op y op x op p p p p = + + = h where 2 2 2 2 2 2 2 z y x op + + = . Angular Momentum: Angular momentum is the vector operator given by op z op y op x op op p p p z y x z y x p r L ) ( ) ( ) ( ˆ ˆ ˆ = × = r r r Hence, op y op z op x p z p y L ) ( ) ( ) ( = op z op x op y p x p z L ) ( ) ( ) ( = op x op y op z p y p x L ) ( ) ( ) ( = and in “position space” with Cartesian coordinates we have = y z z y i L op x h ) ( = z x x z i L op y h ) ( = x y y x i L op z h ) ( Commutation Relations: The commutator of, for example, L x and L y is () op z op x op y op y op z op x op z op y op z op z op y op y op x op x op y op z op z op z op z op z op x op x op z op z op y op x op y op z op z op x op z op z op x op y op z op y op x L i p y p x i p p z x p z p y p p x z p x p z p p z z p z p z p p x y p x p y p p z y p z p y p x p z p z p z p x p y p z p y p x p z p z p y L L ) ( ) ( ) ( ) ]( ) ( , [ ) ]( , ) [( ) ]( ) ( , [ ] ) ( , ) [( ) ]( ) ( , [ ] ) ( , ) [( ) ]( ) ( , [ ] ) ( , ) [( ) ]( ) ( , [ ] ) ( , ) [( ] ) ( , ) ( [ ] ) ( , ) ( [ ] ) ( , ) ( [ ] ) ( , ) ( [ ] ) ( ) ( , ) ( ) ( [ ] ) ( , ) [( h h = = + = + + + = + = = We see that the commutator of any two of the angular momentum operators gives the third angular momentum operator as follows: op z op y op x L i L L ) ( ] ) ( , ) [( h = op x op z op y L i L L ) ( ] ) ( , ) [( h = op y op x op z L i L L ) ( ] ) ( , ) [( h = This can be summarized by the following: op k ijk op j op i L i L L ) ( ] ) ( , ) [( ε h = Note: ε iik = ε ijj = ε iji = 0, ε 123 = ε 231 = ε 312 = 1, ε 213 = ε 132 = ε 321 = -1.
Background image of page 2
PHY4604 R. D. Field Department of Physics Chapter4_3.doc University of Florida The Angular Momentum Operator (2) The L 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 4
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 04/19/2008 for the course PHY 4604 taught by Professor Field during the Spring '07 term at University of Florida.

Page1 / 29

Chapter4_all - PHY4604 R. D. Field Quantum Mechanics in...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online