{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Calculus

# Calculus - Chapter 6 Exponentials Logarithms and other...

This preview shows pages 1–4. Sign up to view the full content.

Chapter 6 Exponentials, Logarithms and other Transcendental Functions 184 Chapter 6 Section 6.1 5. 4 1 1 ln 4 dt t = 7. 8.2 1 1 ln8.2 dt t = 9. 1 1 (ln 4 ) 4 4 x x x ′ = = 11. [ ] 1 ln(cos ) ( sin ) tan cos x x x x = = − 13. [ ] 1 ln ln 1 ln x x x x x x = + = + 15. 2 2 2 1 2 ln( 2) 2 2 2 x x x x x + = = + + 17. 1/ 2 ln 2 3ln 2 ln 2 3ln 2 1 ln 2 3ln 2 2 7 ln 2 2 + = + = + = 19. 2 1/ 2 2ln3 ln9 ln 3 2ln3 ln3 ln3 1 2ln3 2ln3 ln3 2 1 ln3 2 + = + = + = 21. Use 2 1, u x = + then 2 du x dx = . 2 2 2 1 1 ln ln 1 x dx du u x u c x c = + = + = + + 23. Use u = cos x , then du = –sin x dx . sin sin cos cos 1 ln ln cos x x dx dx x x du u u c x c = − = − = − + = − + 25. Use 2 2 1 u x x = + , then (2 2) 2( 1) du x dx x dx = + = + . 2 2 2 2( 1) 1 1 2 2 1 2 1 1 1 2 1 ln 2 1 ln 2 1 2 x x dx dx x x x x du u u c x x c + + = + + = = + = + + 27. Use u = ln x , then 1 du dx x = . 1 1 1 ln ln 1 ln ln ln dx dx x x x x du u u c x c = = = + = + 29. Use ln 1 u x = + , then 1 du dx x = . 2 2 2 3 3 (ln 1) 1 (ln 1) 1 3 1 (ln 1) 3 x dx x dx x x u du u c x c + = + = = + = + + 31. 2 2 0 0 1 ln 1 ln3 1 dx x x =  + = + 33. 2 1 1 3 3 0 0 1 ln 4 3 4 1 (ln3 ln 4) 3 1 3 ln 3 4 x dx x x = = = 35. 2 2 1/ 2 2 2 2 ln 1 ln( 1) 1 ln( 1) 2 1 1 2 2 1 1 d d x x dx dx d x dx x x x x + = + = + = + = +

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Chapter 6 Exponentials, Logarithms and other Transcendental Functions 185 37. 4 4 5 5 4 5 4 5 ln ln ln( 1) 1 ln ln( 1) 4 5 1 d x d x x dx dx x d d x x dx dx x x x = + + = + = + 39. 2 1 1 1 1 1 2 2ln ln ln dx dx dx x x x x x x = = Use ln u x = , then 1 du dx x = . 1 1 1 1 1 2 2 ln 1 ln 2 1 ln ln 2 dx du x u x u c x c = = + = + 41. y 1 x 0 1 x = 2 y = ln( x – 2) Increasing and concave down on (2, ). 43. y 1 x 0 1 y = ln( x 2 + 1) Increasing on (0, ), decreasing on ( , 0). Concave up on ( 1,1); concave down on ( , 1) (1, ). − ∞ − ∞ − 45. y 1 x 0 1 y = x ln x 1 1 Decreasing on 0, , increasing on , . Concave up on (0, ). e e 47. We will make use of the Reciprocal Property, 1 ln ln b b = − , in our proof. To prove this property, notice that 1 1 ln ln ln ln b b b b b b = = + And since ln ln1 0 b b = = we must have that 1 ln ln b b = − (since the additive inverse of a real number is unique and since y = ln x is one-to-one). Therefore, 1 ln ln 1 ln ln ln ln a a b b a b a b = = + = as desired. 49. 2 2 1 ( ) ln ln s x x x x x = = − 2 1 ( ) ln 2 2 ln (1 2ln ) s x x x x x x x x x x = − = − = − + The critical values are 1/ 2 0 and 1 2ln 0 1 ln 2 x x x x e = + = = − = The function is undefined for x = 0 and the derivative changes from + to – at 1/ 2 x e = . Therefore, there is a maximum at 1/ 2 x e = .
Chapter 6 Exponentials, Logarithms and other Transcendental Functions 186 51. 2 2 3 ( ) ln ln 1 ( ) , positive for . (ln ) 2 ln ( ) , negative for .

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}