Calculus - Chapter 13 Multiple Integrals Chapter 13 Section...

Info iconThis preview shows pages 1–4. Sign up to view the full content.

View Full Document Right Arrow Icon
Chapter 13 Multiple Integrals 404 Chapter 13 Section 13.1 5. 2 ( , ) 2 , 0 2, 1 1, 4 fxy x y x y n =+ ≤≤ −≤ ≤ = The centers of the four squares are 11 1 1 31 3 1 , , , , and , . 22 2 2 22 2 2  −−   Since the four squares are the same size, 1, i A ∆= for each i . 4 1 22 (,) 11 1 1 31 , (1) , , 2 2 ,( 1 ) 1 1 3 1 2 2 2 2 112 2 6 ii i i Vf u v A ff f f = ≈∆     =−+ +−         +  ++   =++ + = 7. 2 2 1 16 x y x y n = The centers of the sixteen squares are 13 11 1 1 1 3 33 ,, , , , , 44 44 4 4 4 4 44 31 3 1 3 3 53 51 , , , , 44 51 53 7 3 7 1 71 , , , 73 and , . Since the sixteen squares are the same, 1 , 4 i A for each i . 16 1 131 111 7 , 444 4 1331 5 7 71 91 9 2 5 2 3 48 88 8 8 8 8 8 8 8 8 8 8 8 8 8 13 2 i i u v A f = =− + + = +++ + +++ + + + + + + + + =
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Chapter 13 Multiple Integrals 405 9. ( , ) 3 , 1 1, 0 4, 4 fxy x y x y n =−− ≤≤ ≤≤ = The upper right corners of the four rectangles are (0, 2), (0, 4), (1, 2), and (1, 4). Since the rectangles are the same, 2, i A ∆= for each i . 4 1 (,) (0,2)(2) (0,4)(2) (1,2)(2) (1,4)(2) 2( 2 4 1 1) 12 ii i Vf u v ffff ι = ≈∆ Α =++ + =−−+− =− 11. 3 , 0 4, 0 2 x y =− ≤≤ ≤≤ The centers of the areas are 11 13 51 53 ,, , a n d ,. 22          The areas are 12 34 1, 3. AA AA == 4 1 ,( 1 ) 1 ) 3 ) 3 ) 11 01 7 3 6 3 40 i i u v A = =+++ =⋅+⋅+⋅+⋅ = 13. 21 01 2 1 1 0 2 2 23 0 0 (2 ) ) [] 2 2 3 16 3 R y y xy d A d y d x xy y d x xd x x = −=    = ∫∫ ∫ ∫ 15. 41 20 4 1 2 0 2 4 2 4 2 2 2 44 [2 ] 2( 1 ) ( 1 ) [ ] 12( 1) yy R y y y xe dA xe dydx xe dx xe dx e x e = = = = = 17. 32 00 3 2 0 0 3 2 0 3 2 0 6 (1 ) ) (3 ) 1 3 2 19 1 xy xy R xy x x y y ye dA ye dxdy d y ed y ye e = = 19. –2 –1 0 1 2 0 5 10 –2 –1 0 1 2 21. –2 0 2 4 0 5 10 –2 –1 0 1 2 23. 1 2 2 0 0 1 1 0 0 ) [ ] 62 [ ] 2 x yx y d y d x x y y d x x x = = += + =
Background image of page 2
Chapter 13 Multiple Integrals 406 25. 4 24 2 2 00 0 0 2 2 0 2 3 0 1 (2 ) 2 2 16 16 128 33 yy y x xy d x d y x x y d y yd y y = =  +=+   = == ∫∫ 27. 12 1 2 2 0 0 1 5/2 2 0 1 7/2 3 0 (4 ) [2 ] (8 2 ) 16 2 73 62 21 y x xy yd x d y x y x y d y d y = = += + =+ = 29. 2 2 2 2 2 22 2 0 0 2 0 2 4 0 2 1 y x y y ed x d y x e d y ye dy ee = = = = 31. 1/ 41 / 4 10 1 0 4 1 4 1 1 cos sin 1 sin1 sin1 ln sin1(ln 4) 2ln2(sin1) yx x y xydydx xy dx x dx x x = = = = = = = 33. 2 1 0 0 1 1 34 0 0 1 2 2 1 2 x y xd x d x xdx x = = = = 2 1 23 0 0 1 3 0 0 1 3 8 3 [] y x y x d y y y = = = = Therefore, . x y 35. 4 3 2 3 01 0 1 3 2 0 0 1 () 3 (3 21) 1 ] 90 y y x y dydx x y y dx x xx = = + = 37. On the xy -plane, the region R lies between the parabola 2 = and the line y = 1. Thus, 2 11 , 1 .
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 4
This is the end of the preview. Sign up to access the rest of the document.

This homework help was uploaded on 04/19/2008 for the course MATH 105 taught by Professor Schroder during the Spring '08 term at Millersville.

Page1 / 32

Calculus - Chapter 13 Multiple Integrals Chapter 13 Section...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online