Calculus - Chapter 14 Vector Calculus Chapter 14 Section...

Info iconThis preview shows pages 1–5. Sign up to view the full content.

View Full Document Right Arrow Icon
Chapter 14 Vector Calculus 436 Chapter 14 Section 14.1 5. –2 2 –2 2 7. –2 2 –2 2 9. –2 2 –2 2 11. 13. 15. 1 22 (, ) : , xy = + F Graph D, because all vectors point away from the origin and have the same length. 2 : , = F Graph B, because all vectors point away from the origin and the lengths are proportional to the distances from the origin. 3 : , y ex = F Graph A, because the vectors point upward when 0 x > and downward when 0. x < 4 : , y ey = F Graph C, because the vectors depend only on y. 17. 2 2 2,2 fxy x y f x x f y y x y =+ = = ∇= –2 2 2
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Chapter 14 Vector Calculus 437 19 . 22 1 / 2 1 / 2 1 / 2 (, ) ( ) 1 () ( 2 ) 2 1 ( 2 ) 2 , fxy x y x y f x xy x x f x y x =+ = + = + = + ∇= + –2 2 2 21. , y y y yy x e f e x f xe y e x e −− = = =− 2 2 23. 222 1 / 2 (, , ) fxyz x y z xyz + + 1 / 2 1 / 2 1 ( 2 ) 2 1 ( 2 ) 2 f x x x f y y y + = ++ + = 1 / 2 1 ( 2 ) 2 f z z z + = ,, 25. 2 2 2 2 = 2 , , xy y z f xy x f xz y f y z x yx zy = ∇=+
Background image of page 2
Chapter 14 Vector Calculus 438 27. If ( , ) , , then and . ff fxy yx y x xy ∂∂ ∇= = = (, ) () yd x x y gy f xgy x y == + =+ = Therefore, ( ) 0 and ( ) . gy gy c The vector field is conservative: ( , ) . x y c 29. If ( , ) , , then and . f y x y x f x y = =− ,s o 2. f xgy x gy x y + ′′ = + Since this is not possible, the vector field is not conservative. 31. 22 If ( , ) 2 , , then 2 a n d . 1 ( 2 ) 2 x x yy x xx y x x x x xy gy = = −+ 2 2 23 , so ( ) 1 3 f xg y y g y y y y c + = + The vector field is conservative; 3 11 . x ++ 33 . If ( , ) sin , sin , then sin and sin . s i n c o s sin ( ) sin yx x y y y f x y y xy dx xy g y f y g yxx y y + = Therefore, ( ) 0 and ( ) . The vector field is conservative; c o s . x + 35. If ( , , ) 4 , 3 , , then 4, 3, and . fxyz x z y zy x xz yz f z + 2 2 (, ,) (4 ) 2 (,) 00 3 3 ( 3 ) 2 3 (, ,) 2 2 , so ( ) 0 and ( ) . f xyz x zd x x x z gyz fg gyz y zd y y y z hz x x z y y f xyh z yx z hz hz c =−= + =−+ = + =+=+ + + + + =− + + = The vector field is conservative: 3 . 2 x x z y y z c + + + 37. If 2 3 1 , 2 , 4 t h e n f x y z y z xyz z 2 3 32 1, 2 , and 4 . (,,) ( 1 ) , so 0 and ( , ) ( ). 2( ) 4 , so ( ) 4 2 . f y z xyz z z d x gyz xyz xyz g y x x hz f xy z h z z z z x = = + = + = Since this is not possible, the vector field is not conservative. 39. cos 2 1 cos 2 1 sin 2 dy x dx dy x dx c = = ∫∫ 41. 2 2 2 3 2 dy x dx y dy dx ydy x dx c = = =
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Chapter 14 Vector Calculus 439 43. y y y dy xe dx y dy ye x dx ye dy x dx = = = ∫∫ Integrate by parts: uy du dy = = y y dv e dy ve = =− () yy y ye dy ye e dy ye e c −− + 2 2 1 2 1 (1 ) 2 y ye e c x c ye xc + =+ += + 45. 2 2 2 2 2 22 2 1 1 1 1 1 ln( 1) 2 ln( 2 2 1 dy y dx y yd y dx y y dy dx y yx c c + + = = + = + +=+ += + Since 2 c e is an arbitrary positive constant, we may write 1 ( 0 ) . x yc e c > 47. 00 0 (,,) xy z f xyz f udu gudu hudu c ++ 49. Using the result of exercise 19, , . r r ∇= = + r 51. 32 2 3 / 2 1 / 2 1 / 2 (, ) ( ) 3 ( 2 ) 3 2 3 ( 2 ) 3 2 fxy r x y f x x x f y y y == + = + = + 2 2 2 () 3 , 3 3, 3 fr x x y y x y xy x y r + + = r 53.
Background image of page 4
Image of page 5
This is the end of the preview. Sign up to access the rest of the document.

This homework help was uploaded on 04/19/2008 for the course MATH 105 taught by Professor Schroder during the Spring '08 term at Millersville.

Page1 / 57

Calculus - Chapter 14 Vector Calculus Chapter 14 Section...

This preview shows document pages 1 - 5. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online