kempe - Spatial Gossip and Resource Location Protocols...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Spatial Gossip and Resource Location Protocols David Kempe * Jon Kleinberg Alan Demers Abstract The dynamic behavior of a network in which information is changing continuously over time requires robust and efficient mechanisms for keeping nodes updated about new information. Gossip protocols are mechanisms for this task in which nodes com- municate with one another according to some underlying deterministic or randomized algorithm, exchanging information in each communication step. In a variety of con- texts, the use of randomization to propagate information has been found to provide better reliability and scalability than more regimented deterministic approaches. In many settings consider a network of sensors, or a cluster of distributed comput- ing hosts new information is generated at individual nodes, and is most interesting to nodes that are nearby. Thus, we propose distance-based propagation bounds as a performance measure for gossip algorithms: a node at distance d from the origin of a new piece of information should be able to learn about this information with a delay that grows slowly with d , and is independent of the size of the network. For nodes arranged with uniform density in Euclidean space, we present natural gossip algorithms that satisfy such a guarantee: new information is spread to nodes at distance d , with high probability, in O (log 1+ d ) time steps. Such a bound combines the desirable qualitative features of uniform gossip , in which information is spread with a delay that is logarithmic in the full network size, and deterministic flooding , in which information is spread with a delay that is linear in the distance and independent of the network size. Our algorithms and their analysis resolve a conjecture of Demers et al. We show an application of our gossip algorithms to a basic resource location problem , in which nodes seek to rapidly learn of the nearest copy of a resource in a network. * Department of Computer Science, Cornell University, Ithaca NY 14853. Email: kempe@cs.cornell.edu. Supported by an NSF Graduate Fellowship. Department of Computer Science, Cornell University, Ithaca NY 14853. Email: kleinber@cs.cornell.edu. Supported in part by a David and Lucile Packard Foundation Fellowship, an ONR Young Investigator Award, NSF ITR/IM Grant IIS-0081334, and NSF Faculty Early Career Development Award CCR-9701399. Department of Computer Science, Cornell University, Ithaca NY 14853. Email: ademers@cs.cornell.edu. 1 1 Introduction Gossip algorithms The dynamic behavior of a network in which information is changing continuously over time requires robust and efficient mechanisms for keeping nodes updated about new information....
View Full Document

Page1 / 22

kempe - Spatial Gossip and Resource Location Protocols...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online