chap017

# chap017 - Elec Exercise Solutions E111-O.7— — I 15 =...

This preview shows pages 1–12. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Elec Exercise Solutions E111 . -O.7— — I. 15 = —R—s{—ﬂ 5 -3.5 Rel => Rc; = 39; = 31:0- I'c; =1c2 =0.5|:I:LA= b' L m=1v _ (140-71—(«51 '5 _ 4.3 {:1 = i5 = um = 5 - (1.23}(3) =55: =1.31 V a: = 5 V P; = -l V in=lmA=llI°3 :53 = 2 V Pa] = 5 V E172 a. Q}: on . 1.5 -. 0.7 —— {—3.5} _ I; :3 RE — 2 =5 R: = 2.15 m icn:is=2mh=3ls_2 Ra: 9 RE: = 0.75 m 'c i uit Anal sis and Desi 2"" edition Solui :15 Man al Chapter 17 =1mA=RE=L3kQ =- iE = 1.23 1113. m b. vx=vy=2V=vQ1mngon 2*03- —3.5 4.8 . = = — = . I; RR 2.15 4 IE 2 23 mix 3.5 —'2 1.5 = ' _—_ _ = _ 7 Ba: I”? 233 a g, o a 3 kn E173 logic l= —0.7 V lemngonwlnnux=w=—0.TV -o.7 - 0.7 _- {-s.2) __ 2 R3 - =r RE = 1.52 kn is: .5 0-1— . .7! mnn=-1.5&Rcl= =r RE; = 320 {I 2.5 Vn=——-L5—0.7 Qﬂon=>ig=\$iizl§£=2iim chszﬁRgz=35TQ — .7— -— . 517.4 Pﬁcxv + icx +1} + i1}(5-2) I. ux=w=lngicl :icxy = 3.22 IDA icn = 0 i3 = —---—_D'7 + 5'2 = 3 mA 1.5 — .4 . i. = g 2.53 mA P = (3.22 + u + 3 + 2.53)(s.2) d» E = ﬁélﬁ law b. w: = w = logico =>€cxv = D {ex = 2.92 M i; = 2.53 mA I} = 3 ILA P = [u + 2.92 + 2.53 + 3)(5.2) a» E = 55.2 mW NM}; = -0.70 - (-0.93) = NME = 0.23 V NM; = -1.17 - (—1.40) =? NM: = 0.23 V Emmi; Qircyi; Analxgig and Design. 2“d edition . Sglgg'ong Manual E116 P = IQ - Vcc :- 03 = Iq(1.T] :9 [5 =118 1AA anon =9'w=l.T‘Iqﬂc=1.T—O.‘l 0.‘ = —-—— = 3. => RC 0.115 =- 39 39 in VR=IJ§L3ﬁVE=L5V E17,? State A 3 C Q01 Q02 Qua Q1 Q: QR 1 0 0 0 of '03 03‘ oﬂ' on on 2 1 0 0 “on‘ off 05 off on on 3 0 l. 0 (IE on of oﬁ’ on "GE" 4 D 0 1 oi of! on on uﬁ' on 5 1 1 0 on on 03 nﬁ' on off 6 1 O 1 on oﬁ' on on off "03" 7 0 l 1 0E on on on off on 8 1 l l on on on on 0E 05 '(AANDC) DR (BAND?) h—F-v w—r mfor n-unfor mmﬁunda statea31nd5 W Gummgoashighforﬂlese'4 sums 817.8 Hawk-gown) =(AGBHBC DPQHDOH F... r-I—‘Dr-ODOQ .— FOOGFHHO§ VCI . 5- . Ic= 101=4.9m:\ ._4.9ﬂ _v;-—07 4.3 ‘B— 3 -0.163 mA- RB _-—; =-R3=26.4kﬂ E1710 (a) VI = v, =5V v! = V,,_.,(s.:u)+2Vr = o.s+2(o.7) = 2.2 V i,=§lf—1=o.70m4 in = Va: #2560!) ____ 5-401 2123"” P = (i1 HEW“ = (0.70 +1.23)(5) or P = 9.65mW (b) wx=vr =0 :>vl=0.70V Vac—v1 _5-0.70 E1111 i‘=—RI-———4-—=1.08mA P=i,-Vcc=(l.08)(5):> P=S.4 MW 8.. Input: =D.8+D.7+G.3=2.3V ;, = {5.1 = 5" 2‘3 = 0.675 um. 1411 = 0.5 + 0.7 + 0.7 =1.6 V 5- 1.6 = 1.7 mA. i: = 1.7 + 0.675 = 2.38 mA. 0.8 H=T€=ﬁﬁﬂmh in: = 2.33 - 9.05 = 2.3 {BA 5 ‘ "'1 = 1.23 mA I'm;- = 5 ' “‘3 = 1.05 am £1 = Him = N5}. + inc (3mm) = N(1.us)+1.23 : a = g b. Ic.r.g.d = mA- 20 = Ni1+£3c = N(1.05} + 1.23 Y st {1' ha cr17: E c ‘ lti ilx = any = i1 - ﬂu = = “1A 3. . lax a: lay = 0.1 a v; = 0.3 is: = liml = 3" + {Ex +i5y = 0.45 +2[O.l|45) u = 5 10.5 = 0'? “IA = lic1| = 0.54 MA um =O.B+ 0.1 =03 ﬂ='\" _ - iz=ica=51:'9 3i; =|g3=2.13mA b. Sam: as pan (2.]. i3: = 2.73 + 0.54 = 3.27 mA c. vx=vy=5V=>y1=0.8+0.T+0.T='2_2V ii=§l§=a533mA il =I2 = 3—52.? 9 '1 =i->=0.467 mA im=3.27—D.533 . . . 5—0.1 . . ‘ in=21§=>ig=a053mA “a”: 2.2 :L—L—' 2' =2'23MA ig=i1—iﬁ=>ia=0.4l4ml\ 1:“in —D. ‘ - - ‘ {H.325 , laiﬂg=ﬂﬂﬂmA ﬂ=lﬂ=5m<ﬂp=aamnmnon a 1m 0. 4 u9=ﬁ.lV FOIQBI :¢_°=%=ual<ﬂp=>qomummn 517.13 '9” ' 8. yx=lry=ﬂ.lv 5 as E1115 £1 a: = 0.525 m t Gum m: P = i1[5 - 0.1.) = (0.525)(4.9) I: 5 _ Eo‘l + 0.8] 83 =>E=2§7mw IL: 5 90.5 icﬁmlx} = ,3: ' im = N11. 4- II: b‘ “x = "Y = 5 V' "1 = 2‘3 V mum-u = N(o.ssa) + 2.2: ._5—2.3 .1- a amass“. =AL_=_1ﬁ. v¢1=1.6V=:-ia = 5;? =o.944 mA 1;. Outputhigh: in = 5 ‘6‘“ = 0.311 M q; jaws: naive ;; = 5‘“ =0.45mA P = (1': + £2 + incHVcc) = (0.333 + 0.944 + mums) W 5 " 2‘4 __ N -' £1: an .4; = {u.1)(u.45) a 0.045 m WUnin) = 2.‘ V : i;[mu) = 2.2 - IL 1.13 = N(n.o45) 517.” a. M It In: - BY = 0.1 V “B! = U.1+G.B = 0.9 V 5.17.15 ‘3‘ ' i1 = 5 ‘50-9 aw a». k: = w = 0.1 V : Mahmud = 1.5 V in z D Q; inverse Iain i3; =13, = o i; = 5 ‘6“ = 0.45 mA i... = in = o i}, = .8" - i; = (o.1)(o.45) = 9.045 b. ux-:w=3.ﬁv i23=2§1=m05m4ﬁ "’1 " °" "' a" + “’7 = "3 V i; = (s + ﬁﬂim =(21)(o.05)=1.oa mA 5 - 2.3 it = in: = 5 am .4, = Ni}, =- 1.05 = moms} => 3321 ° ' ' ' in 2"" ed'tion So ' Manual b_ px = FY = 3.6 V, 0W1“ 10": 517.18 i. - 5' 2'3 = 3.45 mA 9‘ "' ‘2“??? . . ' = ‘ '3, =0.533 A m = (1 + 251:)" :51 6 =9: m im=0.5£m.A 3'01 =iaa=icn=0 {m =13“ = CI up: = 0.3 + 0.3 = 0.9 ﬁzz-5-03:2.05ml'1 va.=0.1+0-7=0-8V ‘ 05 054 o'_8 ' - 2 06 A is = 0'1 =94.“ = 1.19 uA Im=2. + . —L5:-Im— . In Q (21”!) .1 = 5 ‘5” = 0.333 [ml ———-“" = “'5 “A 5,. a,” = 1v «'1, a. (20)(2.us) = M3333) W =' m €17.19 . 5 4.4 £17.17 a' “"3 ‘ 2.25 ‘2'“ m“? ., .04 .. I. rxxw=3-5V 1c=2-—+2—1-=>1£=3.67m.A ' 5 2 3 1 + YE in = ‘ ‘ =o.575 um = i3], = |ic1l=i32 4 -—————~— .. 3.67 13 = — = 0.36? mA pg. =0.a+o.1=o.9v o i235I23=156mA I m=2—_o.357=.ng=1.53mA b. ED=0aib=ia=2mA ' "'2 - M :i 1 61 A = -—-—— — = - r - - ‘3' {1 + ﬁrH-l} [311(4) ——--”‘ " 3:: = 3i; = (103(2) = 20 m = m + u MEL iL=20-2.0<L=>i1.§max}z18mA i3: = i2; = 0 =3» {£3 a i: = 2.56 mA 5,. = 2.45 + 0.675 — 93-5 a in! = 2.44 mA Unload: 5 ‘4” =3 emgmu) - 1.03 m b. vx=yr=0.1'V em a #:9- aim = 1.03 mA licxl =im = {ca :0 im=igg=u ii=£c°= Outputhishﬂn=0=iﬁl sic; =0 5 - £341.61 + 0.7 + (31);}..{4} #15, = 0.0342 mA 3;, = 1.03 mA Ice! is ' u'tAnal ‘s and!) i Chapter 17 Problem Solutions III .1 y; = —l.5 V; Q] 0E: Q: on —.'r——. . is: 0 5 35i=>.5=o.55mA £c1=0=avgm=lSV icz = is =9 m = 3.5 — in!“ = 3.5 — {0.56)(2) Ol' gm = 2.33 V b. V: =1.0 V; 01 on. Q: of (1 - 9.7)5- (-3-51 :3. MA ica=°=>ﬂ3 l3: c. logic 0 It Inc; (low 1nd.) = 2.33 V Then [do] = 2.33 = 3.5 - "3.76)ch Ol' 52: = [.47 k9 17.2 (a) Q: on, v5. =—1.2-0.7 =-—-1.9V _]_ _ _ l‘l.r=a'cm =Jﬂ=132m 1": = '1 V = "E236: 1" '(sz-Rcz) Ru =0.758 kn (b) QI on, v, = —0.7-O.7 = 4.4017 -1.4 4-5.2) = 15 2 MA 25 v1 = "1 V =" CIRCI = "(Ijlxﬂca Re. = 0.658 K! 'z='c1= (c) For v“ =-D.7V, g on, Q1 off ='.wm =-0.‘10V v0, = 4-0.“! a v0, =—i.7V For v“ =-L7V, Q, off, (".12 on sum =-0.7V um = —1-0.‘1 .1) v0, = -l.TV 2"" edition Solutions Manual (:1) (i) For v... =—0.7V, 1‘, =152mA I... = ___—l‘7 '3(‘5'2) = m m is! =‘°-_7—3£:_5ﬂ: L5,,” P = (i, Hm +ic,)(5.2) =(I.52 +1.17 +1.5)(52) or P = 213 mW (ii) For v”. = —1.7 V, ER = IJZmA . -o.7—(—S.2) [C4 = —--—3—= 15 MA - .7— —5.2 Q, = —i--3(—)= 1.17mi P = [1.32 +15 +1.17)(52) or P = 20.? MW 17.3 _ &T-07 ‘ I” — 05?+l.33 '15'“ V3 = mi. + v.r = [1.5)(1.33] + 0.7 or VB = 2.70 V b. logicllcvd=3.T-0.T=-m Po: 11x = My = logic 1. 3 - 0.7 0.5 93: = 3.7 - (2.37.5)(0.21) = 3.10 V =? = 2.4 V = 2.375 111A =t'nc1 Forux=w=logichaon 2-7-0.7 1'5: =2.5mA=ig¢,-3 My; = 3.7 — [2.5)(0.24) = 3.1 V =9- wzihﬁ' D! = 2.! V 17.4 Vn=hml+1° °=L+_°=o.5V 2 2 For in =1mA m=waﬂﬂ sum For 523 on. i _ V3- V3: —!—2.3! S —' R3 or 0.5—0.T+2.3 Rs: 1 aﬂi=11kn Elggggmic gin-cullI agalgsis gag Design. 2“d edition Soiutigns Manual 17.5 V31 = Va. 1- Val = 0.5 +0.7 :- 1.2 V . 1.2‘-l.4 - 1—2.3! 3 I1 R2 or aﬁwaﬂﬁmm 3.: “:1'2=>n, =o.5 kn i3=m3ﬂ=3=ﬁﬂi=len i.=°;(ﬂl‘3:§l=a=»g=o.rérkn FOIQRCII'I. unn=logico=ﬂv=\$ym=0JV i5=icn=lmA Sn Forvjslo‘inl:lv. i. = 1 ' 0‘7 ’ ‘2") = 1.233 mm 2.1 Formn=loﬁco=nm 93‘ = Then 1.7 — 0.7 a: = . [18 m Re: 1-235 =b Rm 0 8 Muimumiz forw=lngi=l=3.av Thalig=5um= “‘03 meahgic1=33V £n=3';:°=5ma 01' E: a 0.66 kn By lawman-y. R; = 0.65 kn 301' Q: 011. Kc: So RE; 5 0.12 m Fﬂ' as on. . - 0.? . I; I: 30.53 3 L423- link = 13:: m1 inc: = 4.423 = M Re: :3 RE; = 0.136 1:0 R8 :3- R5 = 0.52 kn [7.6 Neglecting base currents: (a) I,“ =(i.IIn =0 E“=5ﬂc”::.~ I,,=l.72mA Y=0.7V' (b) r5l=§'lT°'7= Im=o.239mA 131:0 Lug—'03:» Iﬂ=l.72mA I’=D.7V - .1 (c) Im=fn=5—r:—:> 1m=183=0239m4 155:0,stv (:1) Same as (c). 1.7.7 (a) VR = -{1)(1)—o.7 :3 Va =_-l.7 V (b) QR off, then v01 = Logic] = —0.7 V QR on, than val = —-[1)(2) -0.7 => vm = Logic o = —2_7 1’ 91195.03; lhcnﬂﬂ Q; IQ; 011. than vm = —(])(2)_0'7:, Va: =L°SiCO=-2.7V W411i, Q! on, V: = 43-01;: V, = -2.4 V A=B=L°3fc1='°-7mon, V, =-o.7-o.7=> V, =—L4V “3 A=B=L°giémgug 0n. ,6 = = L57 "IA -o.7 — (-5.2) = — = 3 MA ‘3 15 P =(1.67+1+1+1+3){5.2)=> P =39.9mW A =B=Lagic0=-2.7V ic,=3mA.z'c,—_-L67m P=39.9nlW 17.8 I. ANDth b. 10E 0=0V s - (1.6 + 0.7) 1.2 V: = (2.25)(o.a) =- mg‘ L: 1.5 v Qami= 22.25mA Cha ter :P em utions c in: = 5:60.? =51“ :1 1.65 mA 1:. £3 = 0.367 _ 11.2— —3.1 . - . .7 . ._ _ I5.12:5 0172+0 a. =3mA [,3— 3‘3 _.1mA i:: = 0, 1;: =15 = 3 mA 1" = “0'2 \$4” = 0.1179 mA -‘-—V =0 1" =(0.567+1+0.379)(0.9—(—3.1)1 5 1 a 11 7 or d. .5.=—Zi-éﬁ—+-‘—}=iﬁl=o.962mA E=Hgmw im=5““i+ml=nﬂ=2.25m\ 17.11 is: = a, {£3 =15; = 2.25 mA L i] = (‘0-9 '0'? ‘ ‘3) => 1', =1.4mA z 21.3 V 1 £3 2 __————(’°'2 " " (—3) :1: = 0.1-1 mm 17.9 “ ___ _.__L_.._.["°-2 ‘ 0'7 - (“3) =1- 1, = 0.14 mA V 3.5+“ 15 i. “=T—9'7*Z3i3.:5_v.. gq+gp=n+ia=1_4+o.1-1=1.54mA . F = = ' = 3.5 . b “010m” W 19ml v i,=%%:u’z=0.8mA is = 1.5-(01:+u.1) =D‘175 mA tn =01: mA 11115 04 ‘Lﬂ—u ="Mv Whaling-1: .2 =R.—#RE]=4.STKQ ‘3‘ b. i, = 1.; 111A - - Wil - - C. For Q: on. is = = 0.155 mA ‘3 = 15 a I} =1'n % '1: 0.153 IDA szim1=ﬂ=ﬂ=>nﬂ=smkn i=+in=ic=ﬁm 2 RC: . IQ = D d. For By .- logic 1 = 3.5 v w = -(°-153)(0-5) =‘r = 4-9755 V 1 W - = im=¥=351nk 13:0.175mp. ‘- "l: 1 ‘m P =11.“ +is)(Vcc} = (0.35 + 0.175105} 5, ._. ‘93 ' ‘ '3 a i, = 11.14 mA aw i..=i;:i,=0.l4mA 17.10 ;,+.-,,=.', :4 =11.” mA I. Logic} a: 0.2 V 3—— i =01?! 10:11:11 = -o.2 v Ji— m, .-. —(u.14)(u.5} => 5 = -1107 v b. ig=w=ua ' - .T—D.T — —3 . R5 CL [email protected]—u—TLL'J\$Il=l.5mA Sn _ — R§=3kn ia= 0‘01): 3):ii=ﬂ.153mh I} =in=§i =0.153 IRA. . 0.3 0.4 _ I 4—*—'_ I _ = c- wm“m=T=R—1#§;_-__l_ltﬂ :1+:p=:.+u.-1.a+o.153 1.?53mA d. va=yy=hlinl=mzv i3=%=’i =OIBmA in: w=9357 “IA i2=0.953mA 0.4. 5:41.401! in: = T aim =D.4 am in; = 0.4167 111.1% Elﬁmnic Qimﬂ Angﬂgjg and Design. 2'“! edig'on Solutions Manual 1712 17-15 L L A-B‘=C-Dau=’Ql_Q'cumﬁ i. FOIPX=UY=0JVI5E=EI§E 5" 1‘1 = 5 ‘82‘2 :1. =0.525 mA VDD=213£1+V33+1332 i =i =0 Ind J--’— IE IS ii. Forux =vY=5V_ I :: __ a 1+” 51 u'=n.a+o.7+o.7:=>g'=z_gv . 5-—2.2 . Then 11= 3 :1. = 0.35 mA 0.8 . ' =' —— ,= . 7 2.522I5(2)+0,7+I_E.{15) I4 :1 15 :4- 029 mA 5‘15 i-5*"'1=>i;—204m11 3.5—0.1: 3— 2A , 5" [7.16 13:9.419 MA I.. Fat vx = 1134 = 5 V_ both ‘2‘ ﬁnd Q: Mum into and saturation. 1" =15 -2{0.4]9}(2)=b Z = 9 gas 1 u; =ﬂ.B +0.7 +0.8 =- y: = 2.3 V " A C 03 D 25v 1'I=‘5":"q=:~i=i =U.675mA 1" 3 = . = = . .1__£l_—_' ,. . 5—!O.B+D_7+o.1z _ '1: 2 :33=1.7 mA Now v m 25 07 13v i1=i31+i1af =2.375m\ HI: = . — . = _ 1 ad 15=%=i:=u.namA Y=93§+°J=\$t=2§y 1 is: = i1 — £5 3‘ = 2.295 MA . 5 — 0.1 . u. Y=(AORB)AND(CORD) m= 4 #u=_1-22i91.é 17.13 ﬁf—y—v t. ID V 1 = 0 V _ m b. .1 _—. 5 (0" “3"” =1.05 111A logic 0 = ~o.4 V 4 him“) =- 18in: = Nil}, +1.3 b. no. - A 5R 3 {20)(2.295} -_- N(1.os)+1.225 m2 - a 511 15 50 m = vs 5: ya u: a: ‘ a 17.17 D, and D, 01f, Ql forward active mode v, = us+o.7+o.7 =22V 5:11}; +51%, +v. and i.={1+ﬂ)"z m=(AORB)AND(CORD} 17.14 So 5—2.2=' 1+ + I. FosCLOCK - high. In: ﬂows through maleft side of 5“ mR‘ RI] mm.ﬂ%ishigh.lpcﬂwsmshmcbﬂﬂ Assumeﬁ=25 minor pulling low. If!) is low. Inc ﬂows through . w 5-2.2 . _ the right R resistor pulling 0 low. ‘1 (“XL-,5) +2 3 '1 ‘ 00539 “A For CLOCK = law. Inc ﬂow: though the tight side fl =(Hmi1 =(26x0‘0589): 1-| :15! MA nimemuumm;gmﬁmmmpmmus 5:51,: i,=1.47mA mm. 08 1,, :12 +1, -—'— = 0.0589+1.47-0.16 :3 b. .P = (In:+0-5Inc+0-lfnc+ﬂ.lloc](3) 5 7 so 3 P 2 w i”=137m P= 1-7196‘13) -(11 H K }=' - 551! Q, in“ .on 5—0.1 1c, =—-6—=. 1c, =0.817m.4 __ Chapter 11; mulem Solutigng 17.13 17.20 p, L yxsw-O.IV.:nminumdon. I. Fervx=w=5V.Q.inmmﬂvemoda. -1 I . s-g0.a+u.a+0.'r) _ i] n 5 0.. g'. _ “IA |BL = s — IIIA #i I'm 3 is; + 2,531.3: = 0.45[l+2[0.11}= 0.54 mA - - ' - ELM-.5). _ 9x =w=5V.m Q1 mum-ruse Imemode. Icz= 2+ -2-°5mA Assume Q; and Q; in saturation. 0.0 ' i3,=(iag +£c=)——=0.54+2.05-0.533 _ 1.5 i1=uwsil=im=usm or ig=w:iz=2.05mh ‘ "'5 ', 0 533 m N" n a *9 I = - _ L5 .1 = = 0.533 mat in, = {em + .3) — .'. = 0.45 + 2.05— 0.533 “1‘” or icﬂma-X] = Brim = Ni}. in; = 3.97 u'LA or (20)(2.oe) = M0003) ia=%sii=2£3mh =Eﬁﬂ . In. From above. for no high. I1: (0.1)(0.45) b' P“ Q" = 0.045 talk. Now i 2.23 , 5 — 4.9 (21)(0.1] aﬁ'mﬂ-“d IL(m“)=(1+5’)(T)=‘T = 1.05 mA Fﬂ' Q: So i 2.05 :2—=BI—-=4.56<ﬂ I;(mu)=NIi or 1.05 = M0045) Since (Ia/Ia] < ,3. mama-Insisth inuzunu'nn. =- E11 17.19 17.21 (I) v,=¥,=L03i¢1 (a) Vh=0.IV:QI,Sat:Q,,Qa,Cut0ﬁ' '=0.s 2 0.7 = - . v s g; 1 22" .,.:_(2:Tt£ﬂ.mm .=—-—= 0.35M , s P =:, (5-0.1) =(1.025){4.9)= 1. = a, -E =0.Js—0.0533=02961mA 202—“: I 15 (0)14, =5V, thnverse Active; 12an is =ﬂ= 23.4 m Saturation 2.4 v” = 0.7 +0.s+ 0.7 = 22 V 5— (Hi-0.7 _ i,'_ = —-£3——)= 0525 am i, =—5 422 = 0.7m Assume 5= 25 in = ﬂ, 4, =(0.l)[0.7) =o_07m.4 Then (25X02967): 2.04+N(0525) V“ =0.7+0.1=o.8V So N=10.2= N=10 _ 5—0.8 (b) New I: = -1—= MA 5 = 2.04 + M0525) P = (3‘, Ha, +i,}(5) = (0.7 +0.07 +42)(5) =0 SoN=5.64= N=S P=24.9mW Elgmnic gigggj; Analm; gm Qesign. 2"d editign Sgluligns Magma] 1722 b- In: = "Y = II: = 0.1 V I. l'x a yr Sill: = 0.1V ._ . 5 -(ﬂ.1+o.sz , 1'91 = 5 “539+ 0'8 :4» I'm =1.05 mA '31 = 2 =5 :3; = 2.05 mA Then From pm (n). i1: ﬁn - in; = (9.3)(025) = 0.015 mA Than h' px=yy=PZ=5v im= 5” =Mﬂ=£ =0.003TlmA 5 (08+08-H113 “'5'” 10‘ '" i” = I 3.9- =’ 11—i = “"92 “‘A 17.24 Then I.. vx=vy=vz=DJV is: = in = imﬂ + 353] = (0.592)“ +3[0.5]) 3" =ii =133m“ {81:5-10é1+0.8)+|.sl Bl . 5-!0.1+0.Bz . where .m_-_ m = 3 s“ a 2 05 um . g2 - 0.7) — (0.9} _ 0.4 I. = .. -I— 53: PM}: +I'c2- %- L73+2.05- 1.0 m R3; 1 . =3- iEa = 0.4 [ILA 3 IE. = 2.73 mA. 033:5;2‘1 :21“ mA mm - . 1.1 . - . . = —- 0.4 #131 = 1.5 mA 3"; = 5 (0319+ u 8 = [.05 mA '8' 1 + 1' =D=i = i9; = 1.29 mA I I _' Q: salmnnon 1c; = 51‘: For m high. “.23 . I. "x = W = "z = 1-5 V. Q: binned in the invm "'31 =0.8+0.7=1.5V=>Q§ of mem. rm=2—1.5=D.5mA —§ 1 " - " 0.2 0.5 =0.lmA is! = 2.5 + 0.7 at. = “LA I; .6313: =( ) in, = 621(1 + 353) = 0.250 -+- 391.31) a in = 0.475 InA Thu: arc; =D.5+0.1=0.9V {a =0.5 nut b. lax = w = If; =2 V 0.9 - !0.7 + 0.1! 0.1 in. = (1+ 5,131.5) ’ (mums) MP”, W = 0.00198 3111 (NegLigible) :31“ a: = 0.5 mA .-m.§_;_.;ﬂ=4.ssm £E:=D=i£3 =5 £23 I 4.55 ILA. is: = £1.30 + 35..) = (0.5)(1 + 3[o.2]) in;=iag+im—E?=D.475+4.56—0.8 i _“m a- . =1L__i =4-235m icz=5i1.mdfmmpm(t). .1=1.5mA 80 mm g !11_E” a]. 17.25 I." a 1.1 -O.7 53—0.? (Mia-5) I 1 +1 = = U n n m 05"“ a. 'm = 0.00369 mA 5—(03—03) _ 5 — 1.1 [c_ID=__.l 1.33::W—5J3mh Now a {£3 a 5.13 mA JD=0.51~I,=0.51-5=—=o.51—1—° "“zimﬁc’ 5° Emmi-5531.41 Then lc-ID=IC- Ojl—I—c =1 Hi —051=46 50 C so ' ' 11.21 50 [c = \$.01mA ._ Mm; mg outpm transistor Q; is a Sammy mm- ! — 1‘ 301:: 1 (1100an “m” m a_.———— = _ _ ﬁ 50 ...‘______. w=o_4v‘;£=&.5__(§'4—M=u.5 ID = 051-01002: 1,, = 0.4093mA ‘" Va =0.4V “ I R 6 m _._._..._. m = 3. (b) I =0,V =V m! =o.w :8 OBOE CE( I) The“ I, = ' ' => 1, =G.5m.4 {m = 3-5 - (“v7 + 0-3) = .13 __. 0,273 mA 5 0| *— Rm- 3.6 I = _ ‘ = 0-7 c = [c 4‘9"”! i32=0j mA, 1'31 =0.5+a—7=l.59mA [31 = i3; + {(3 5 icy, =1.50 - 0.275 =1-222 111A L vx = yr = 0.4 V m is, = 2'5 - (2‘7 +0'” = 1.222 lnA C). 951 =04 +5011: Hm =].1V ‘=’ R = 139 i3| ! 2.8- 89-1}: =1.39 111A [L “x = yr = 0.4 v‘ va3=ﬂ.4+0.4=tnm=0.ﬂv ycg=2.5-O.T=-mj£y_ im=im=in=ico=im=ics Anmnmwmntsmm. = in = is: = 0 (N0 M) C. I’m = 1.5 V, 9:} = 0.8 V Current: admitted in put (I). 5 == imﬁz +an + (1 + ﬁlimﬁs gag—ELM..— d. im=o.5m.ag=o.sm r “'7‘ + (“K”) (adult!) = mm = M; or (so)(u.5) _-. mus; => '3, = 0.0394 mA 30 in = ﬁrim H.351 =r in = 1.18 m)! 17.28 pg. - 5 — (0.0399015) I. For 9;: = w = 3.G v =- .ﬂ____” -= 4-97 V vs, = 3(1),?) = 2.1 h‘ vx=w=uv =i31=5_2']=0.29mA 931 = u.7+o.7+u.a awn, = 1.1'V 1“ Va: = 0.7 +0.7 +0.4 = 1.8 V Ila =1.4 V . s — 1.5 W ﬁlm= m =0.32mA. pg; = 1.1V . s -1.7 in = is; + in - M = 0.29 + 0.32 — 0.0933 :31 = 15 2.3 5° \$1.21 3' 1.13 m in = in (I + 2311) = [.130 + 2[ﬂ.li] in I: 1.42m Elmnig gm]: anglﬁjg gag Degigg. 2"6 edition Solutigng Mangal in 8 [L517 IIIA we: = 0.7+OA = 1.1 V 5 ' 1‘1 z: 0.951 mm. I'm- ... ac, _ = 0.517 + 0.951- 0.175 in: = is: or in. 21.293 um. Fora-o =04 V. 0‘3, =0.4+n.1=1.1v Then .. 1.1—0.1 -_ = 0.00000 A "‘ " (anus) '“ 51: 5 — 0.00000 0:61,: 0.39 um 50 icdmu} = His; = NI“; (30)(1.293) - M039) =b ﬂ = b. P = [0.29 + 0.32 + 0.9mm + (99)(0.39)(0.4) P = 7.305 + 15.144 or W (Anna-mm; 99 load :imn'n which is 0mmny burn) 17.29 a. Aswan-.0019“. Fat vxslogieo-sOAV an a: M = 0.0915 mA 40 Madlynlloﬁhhmzouwmdfmmvcc. P I in - Vac I (CLOTHES) s E I mﬂ b. in I a: 0.0725 M 40 in .- 5 " "'7 :3"! + a“ = 0.004 m 5 -!0.7+0.‘l! = 0.26 m i’“ a 15 P = (0.0725 + 0.004 + 0.20m) g. Ila-vault], vm=0.T+ﬂ.(=1.lV . —l.1 . . ‘37: =5!” =78 MAS!“ 17.30 (a) v, = v0 = 2.5 V ; A transient situation 0mm”) =25-0.7 =1.8v VGAMN): 2.5—0.7 =1.8V =0 M“r in saturation vm(M,.) =5-(25+0.7) = usv vm(M,.)s-25 = 25v =:. M, in saturation in»: = Kn(”c.r.v ‘ VTN )1 =(0-1Xl3 "03]: :9 in” = 0.10144 im, = mum, w...)2 40095—03]: = ED, = 0.289 mA in = ﬁim = [50)(0.239} => fa = 14.45 mi! in = ﬁim = (SOXOJ) = if, =5mA Difference between is, and EM +1}, is a load current. (b) Assume im = 14.45 mA is aconstant l _ i -r V C VC=EI£CIJI=£ET=J=( CK) .‘CI 5 ISA-ID"I :=—(iE45 10"): {=5.19rls . x ' -——~-————— 5 lelO'” (c) r=———————(0)ggg 104): {=260m' . x ' — 17.31 Let R, = R2 =10kﬂ (a) in" =0.1mA JD}. =0.289 mA (Same as Problem 17.30) 1'“ zo—j-aom mA =03, =02s9-0m =0219mA 10 A in =(so)(0219) = in =10.95mA in = (:4; = 0.01 m = in = 0.14.07 = 0.03 MA in = (5010.03): in =15 mA (5X15x10"=) I=W= I=635M (c) t: 260": (Same as Problem l7.30) ...
View Full Document

{[ snackBarMessage ]}

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern