chap002 - Electrgnjc Circuit Analysis and Design, 2'“...

Info iconThis preview shows pages 1–14. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 6
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 8
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 10
Background image of page 11

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 12
Background image of page 13

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 14
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Electrgnjc Circuit Analysis and Design, 2'“ fiitign Solutions Man_£al Chapter 2 Exercise Solutions E2.l 24 - 12 — 0.6 0.10 b. Vfl{max) = 24 +12 = 36 V C. a. ip(pea.k) = = 114 mA v: = '24sin u! = 12.6 12.5 T1- = 31.7” wt] = sin—1 ( By symme-u'y. wt; = 130 — 31.7 = 1483" .3 — . ‘70 = x 100% => 32.1% 5.2.2 v. # T'sin{21r60t] V V, = _"'_ {R VH1 75 E23 v.=1205in(2360t]. V. :05. R = 2.5 kn Full-wave rectifier Tumsmn0112 =v 052:2. W = 120 — 0.7 =1z9.3 v 'lr’r =119.3 —- 100 =19.3 V V... _ 119.3 _ arm; Era—unis >< 1051(193; C = 2.06 x10'5 = 20.6 x 111-“ =:. C = we HF SOC: [32.4 v. = 50 sin(2:r60t), ‘11. = 0.7, R =10 k9 Full-wave rectifier v... _ {50 -1.4) 2fRV. " mama x 104m) C: 2.025 >-<10"5 =2n.25 x 10—5 => 6' =20: 14F C: E25 Using Eq. (2-10) _ 21. _ 2E4) _ a- 2.. ufit —. V” — v~--—_II,5 — 3.3“ 10 S Vps 5 14V, V3 :16 20 5 R}, S 100 5.6 5.6 Ifimu) :2 fi- = 0.28 A, Iflmin] = 1—0-0— : 0.056 A Electronic Circuit Analysis and Design, 2"“ edition Solutions Manual fauna} VLimin) = V1.(nnminal} + I;(min}rz __ Was-(max - Vz I; max - . - vpstmn’ _ ofivz __ “JV-Pfimu) = + Effiziminiiilj) _ |Eps§ming—Vz[!;(min) [aimin)= 13°“ —0.:so Vrsimin) —- 0.9V: - 0.1Vps(max] _ o 0585 A _ [14 — 51519501410 * 5.6](56) . . _ ' , _ " 10 — (0.9)(5.6) - (0.1}(14) Malina—6:21ttfgassssiu'“= 1688 _ 2352 - 246.4 Va Res = = 0.143 =91-L3‘P'g " 3.55 ‘ Izhmur) = 591.5 mA - Powurimin) = Iz(max) - Vz = (U.5915)[5.6) Power = 3.31 W Vpsimu! — V2 14 — 5.6 132.10 R‘ = Izimu}+ Idmin) = 0.5915 +0355 __ 3.4; ‘ 0.6475 R; z 139 152.7 I: = Kai..1L R, For V,,(min) and Idmax), then 11—9 I: (min) = (Minimum Zener current is zero.) For V,s(max) and 14min), then -0.1=O 116-94330“ £2.11 Izimax) = The characteristic of the minimum Zener current being one-tenth of the maximum value is violated. The proper cirwit operation is questionable. 132.8 fz = -——-—V”(m:)- V2 — A,_(I'rw.x) 50 10-9 0.0153 -1L(max) 0r IL(max) = 35.4 mi E19 % chulation = “M — “(mini Vdnominal} Vdnominal) = 5.6 VAL-nu) = P},(nominal) + Iz(ma.x)rz = 5.5 + {0‘5915)[1.5} = 5.457 st u Unde andin Cha ter 2: Exercise Solutions v, =o.7v E1” Foruy<5. D2011 =>VB=—5V=>V3=4.3V Vu=--0-5V. 1131:0- Dlturusonwhcnvr=15=>vg =l.8V 1m=f= wjjm=r=q37mA Aug 1 R2 1 "’ '7' =- -—--——-=— For H; > ..a, A“ 3 => R1 + R: 3 E2 I6 $R|=gflg ' (a) 132.12 For 1’, = D, vfimax) = —2 15" Now, Ava = 8 V , so that va(min) = -10V 1-32.13 A: #5 goes negative. D turns on and yo = +5 V‘ As us goes posme D turns ofl‘. 35 Output. 5 sqwe wave oscillating between +5 and +35 volts. E114 o W =4l4’ I: 1 11.4 9.; = 0.5895 mA Set I = 19‘ v; = 4.4 - 0.6 — (fi.5895)(0.5) m = 3.505 "U. la H Summary: D 5 m 5 3.5. yo = 4.4 For In > 3.5. D2 tum: of! and when u: a 9.4. 9¢=10 Electronic Circuit Analysis and Design, 2"“ edition Solutions Manual E118 I. In. 2 vie-‘1’ A 6.4 in" I,” = (o.a}(1.s x10"”)[ “ mus 3‘10"”) (“'5‘ I35 =12.8 111A b. We have Bo = {12.8H1) =12.8 volts, The diode mus! be rovers: biasad so that Vps > 12.8 V0115. 13.2.19 The equivalent circuit is +5»; .I. + :szh'iv r‘ 2.559. \‘EMY :I R fl-IV 5~1.7-0.2 I——-—r!—+R—-—15 mA 5-l.T—U.'2 3.1 Tf+R-——15——fi—-G.207kfl =2D7fl R=207-15=>£=|§29 Electr nic Circuit Anal sis and Desi n 2"d edition Problem Solutions 2.1 13:: Rs 1% V,=0.6V,rf=209 FDTVI=1flV, M33( R R+rf ( 1 1+0.02 Chapter 2 2.3 )(10 — 0.6} )(9.4) 2.4 olutions Manual (:1) v,(max) = 1% = 40V (b) PIV = |v,(max)| = 40 V (c) :f —r I L l l I =--- rdr=—-— 40 ' xdx va(avg) give” 231'; 5m 40 g 40 40 =§[-cosx]o =E;[—(—l-1]]=— 01' va(avg)== 12.7 V (:1) 50% yo = vs - 2V1. => ps(ma.x} = vufmaac) + 2V, 3. For Va{ma.x) = 25 V =# uflmu} z 25 + 2(0.7} = 26.4 V N. 150 N1 N; " 26.4 a F; _ 6‘06 b. For w[ma.x) = 100 V : y5(max] = 101.4 ‘v' N,_ 160 N, _ _ N; ' 101.4 a T3 - “'3 From part (a) pm = 2v5(max) — V}, = 2(26.4) —0.7 or PW =52.lV or. from part (b) PIV = 2(101.4]-0.? or PI V = 202.1 V Electronic Circuit Anal sis and Desi n 2“Cl edition Solutions Manual 2.5 a. when) = 24 V : :rflmu) = 24 + 2(O.T) uflmu) = 25.1} V __ 25.4 _ _ _ F vsfrms) — fl : palms) _— 1:.96 \ . _ VM __ VM 1" b' ‘ :2ch =’ C ‘ Hm: '24 _ C=W=C=266IfiF . v"l ‘ C. iDJn-u: = TEE—(1 +21? g—E- . 24 24 'DJn-I — +2FV mm. = 5.03 A 2.6 (:1) vs (max) = 24 + 0.7 = 2447 V v max vsirms)= ’= vscmamsv V V 24 V zangu-za-C: M =--————....._ M ' 12c m»: (603(150)(05) 01' C=5333yF (c) For the half-wave rectifier K, V 24 24 I =— [+4 “ =— 1+4 — “m [ E 150[ “42(03] Or iD_M=10.OA 2.7 2.8 4. (i #7? 'L): ‘1: 5 _ Vé:[2|/ US A era—u 7h :11 \ vs (r) = 24 sin at Now intavgufiifow We have for x, S at 5 .1:2 , 24sinx—12.7 ID = ———-—-——— R To find I. and 3:2 , 245ian 212.7 :61 =0558 rad x2 = :r—OSSS = 2.584 rad Then . 1 " 245inx-12.7 'a(m’g) = 2 = Of 2:21.83—LOQE: R R -——-—--—— Fraction of time diode is conducting = x2 -x1 “00% = 2584-0558Kwo% 21: 211' or Frac ' n = 32.2% Power rating 1' x . 2 Em 2R1?”=fijigdt=£J[MSInx—12.7:l (ix Ta 2:“ R N94)1 sin1 x — 2(12.7)(24) sin x +(12.7)2 ]dx [Mfg — “14hr —2(12.7)(24](—cas.r): +{12.7]2x‘::| For R: 1.19 9 . then PM =17.9 w Cha ter 2: Problem Solutions 2.9 2.11 R=£=lsofl Foru.>0, (V,=n) 0.1 vs(max)=vo(max)+V, =15+D.7 Or vfimax): i5.7V Then 9 RH U. vsfm) =§= 11.1V '- no R New L LE: £=los _ N2 11.1 N2 .0 = (_R_=IIm_) RaIIRL + R; V=Vy =C_ V” __ 15 RR 2 156 ' 2ch ZIRV, 2(60)(150)(o_4) 1" L - 1:25-13 — - m or an .—. "I. = 0A3“ 1:. PW = 2v, (mag—VF = 2(1 5.7)_0.7 or PIV = 30.7 V 2.10 For u.- > D V; = 6.3 V R.- =129. V: = 6.8 6.3 —4.8 a. I: = 1—2 = 125mA IL=I1-Iz=l25—Iz 25<IL<120mA=>40<RL<1929 b. Pz = Isz = {100)(48} =# P; = 430 mW P; = ILVu =(120)[4.B)= P: = 576 mW Vq=0 2.13 Village“: RL+R1 =Pi RL ‘ 1 *- II= =H'r_=4flrpfi M) = g: -y[ RL-l-Rl 2 I 10 L—J—BE=>I; 226.3111A 'U. fz=If—IL=¢>Iz=18.TmA 19 Electronic ircuit Anal sis and Desi n 2"“ edition Solutions Manual b. Pzimnx) = 400 mW => 1mm) = “10% = 4a m NW 6 6 . I =-—=D.012A, I ' =——=. =. 1.5mm) = I: — mm“) = 45 — 40 Arm) 500 Jun“) 1000 0006 A . 10 Now =# I = 5 A = — nfmm} :11 RI. R _ Vps(min)_vz =- R; = 2 m " 12(min)+IL(max) For R‘ = 175:) c" 15 6 it _-. 5?.1mA I; = 26.3 1:: 30.3 mA 230=W= 12(min)=0‘030 A z{ma.xl)o— 40 m.'\ a ILLn'unJ = al.1—— 40 = 1r.1 mA The“ R; = m a R; = 535:: [2(max)=0.l+0.02=0.12 A and 2.14 R = VPs(max)“Vz a. From Eq. (2-23) 12(max)+IL[“fi") Mm“) _ 500[2o -10]~ 50[15 —- 10] or ( ) ’ 15 — (as-mm: —(n.n{201 230:»—-——V” “m ‘5 v =413v 5000 450 D.12+D.006 2’ ‘ 4 Iz(ma.x} = 1.1875 A D 2.17 130nm) = 0.11375 A Using Figure 2.17 . 2-21b a. Vp5=30£25%=>15SVpsSZSV 20-10 R. = =3 R. = 3.039 For Vps(min) '- I=I II+I 2' 20:25 A 1;. P2 = (1.1375){10) => Pg =11.9 w ’ mm" “mm 3+ “1 P; = I;(mu)% =(u.5){1o)=> P; = 5 w R, = 152751” => R. = more _._.....__ I _ 2.15 b. For Vjfisltmu) (a) As approximation, assume {2(max) and [2(min) => IILmax) = 25}; m =- Mini-x} = 75 “LA are the same as In problem 2-14. For Idan 2 D a Izmu) = 75 “1A %(max) = Whom) + Iz(ma.x)rz Vzu = Vz - Iz'rz =10 — (0.025)(5} = 9.875 V = 20 + (n_453}(2) = 20.906 Va(ma.x) = 9.875 +(D.01'5)[5J = 10.25 Wflmin) = Vo[nom} + Iz[min)rz Wmin} = 9-375 + (0305)“) = 9-90 = 20 + (n.0453)(2) = 20.0905 M 20.905 — 20.0906 ._ Mi ._ b. 95 Rag = T x 100% c. % Reg — Vanuatu) x100% => 5’6 Reg — 3.5% =- 96 Reg = 4.08% 2.13 2.16 From Equation (221(3)) . V (min}—-V 24—16 _ VL(max)-V,_(mln) Rf =_rs‘__*___g,__,=__ 93ch -— WXIOO% [2(m1n)+ [L(max) 4D+400 or = VLKWm)+ I‘zAEImU‘)!’z *(Vdmm) + 12(mink) 12,. =18.2 Q VL("°’") Also = [12(max)—rz(min)](a) = m V, ziz c = Va 6 ZIRC 313V, So RaR,+r,=132+2=2o.2n Iz(ma.x)—Iz(min}=0.l A Then 24 C = 2(60)(1)(202) :> C=9901flF Cha ter 2: Problem Solutions -———-———.__._____.___.—E.____.___.____ 2.19 V: = Vza +1211 Vz(nnm) = B V 8 = Vza + (u.1)(o.5) => Vzu = 7.95 v 1‘ = Vs-(mu) - Vz(nom) _ 12-8 I R; _ 3 Potlg=02A$Iz=1JS3A = 1.333 A For I}; =1A$Iz=0333A Vflmax) = Vzo + Iz(ma.x}rz = 1.95 + (1.133)(c-.5) = 3.5155 VL{min) = Vzn + 12(min)?z _= 7.95 + (o.333]{o.5) = 5.1165 AV; = 0.4 V (JV; 0.4 %R=g- Vofmm) — —5-=>%ch_5.0% =—-—VM :3: = V” K. C ZJRC 2;}in R=1§+n=3+05=35§1 Then 8 C = 2(60)(35)(0.8} 2.20 (a) For 405 u, so. both diodes are conducting: v0 = 0 For 0 S v, S 3, Zencr not in breakdown, so f, =: 0 . v0 = 0 => C: 0.023817 For v, >3 (b) For v, < 0 , both diodes forward biased . 0 - v, _,I = ID .15“ v, =—10v,iI =4,“ For v, >3, fl = V333 . At v, = Low, 20.35mA 2.21 (a) t K [K 2K V: +l'5 V1=%x15=5V=>fDrw55.7, rig—2w _ , 15—V V w... 2 1=T1,y°=V1-|-B,T 111—91) 15- vu—0‘7)__1Iu-3-7 1 2 1 V! 15.7 0.7 (1 1 1 _ ._.... a: - - — z 2.‘ 1+ 2 4-1 lr't: 1+2+1) "OI 9) 1 5.55 = 119(15):? #9 = 5-3-14; + 3442 E + ((3)51, = D for 05v, $5.7 Then ID— v, — [it + 3.42) v, —-v0 _ 2.5 l 1 or . _ 0.5u, — 3.42 {D 1 Forv,=15. in=558mA Elgtmnic Circuit Analysis and Design, 2'” edition Solutions Manual ' . 30—10.? For Inf—30V. 1.. 100+“) 9o =i(1fi)+10.7 = 12.5 'v' = 9.175 A 5;? .1.) v‘) ’5' f‘ u. 2.22 11.5 __ um 20 (a) For Duff, v0= 56 20)-1o= 3.33v n Then for v, S 3.33+O.7 =4‘03V =9 v0 = 333"" For v, > 4.03 . v9 = VI -0.'?: do For v, =10, v:JI =93 2.24 + 5 - ‘UI "‘4'! I no R=E£K $1, = 0.5 v w = 15 sin .41 (b) For v, $4.03V , in :0 For v, >4.03, fp+fl=m 10 20 Which yields in @551” 41605 For vIr =10, in =0395mA 2.25 a V... = 0 2.23 can-l4 ha ter 2' Problem Solutions b V... = D 218 ¢ U; -—1 U4 10 uh L VI "‘ __L a. ForV,=0=>l/'.=2.TV h. For?’.,=fl.7V=»V,=2.0V VT = 0.6 2.29 C -—l 1.: H.4- I’I "’ T." V 5 J“ 226 O . . nc posmblc example IS shown. 230 L will tend to block the transient_ signals For circuit in Figure P242703) Dz will limit the voltage to +14 V and 43.7 V. (i) For V, = +3 V Power ratings depends on number of pulses per second and duration of pulse. 2.27 V, = 0 I. 1" 4o lectronic Circuit nal sis anch i 2 ““ edition Soluti ns Manual 2.31 For Figure P2.27(a) 2.33 2.34 1.0-0.6 I” IDI—m:IQ:—D.94MA IEZE‘O v. = [51(95): v9 =3.93 v 5—0.5 b. In: - m=1m —D.-HmA IQ: =0 113 = 11:11:95) : Vg = 4.18 V c. Sum as (5) Q - 5 10 = 2 (0.5) +0.5 + I(9.5) :5 I = 0.954 mA :4, = {(9.5) =- Ivll = 9.15 v [m = ID; ='-;-: [m =IE; =0.+8‘2 mA 0.. I=Im=fm=0 Vg=lfl b. 10 5: M95} + 0.5 + 1(05) =5 I=Im =D.94 mA 1Q1=U I4; =10 - {(9.5) =5 V9 = 1.07 v c. 10 = I(9.5) + 0.5 + I(0.5) + 5 :5 {=1}; =0.44n1A 1m =0 V. = 10 — I(9.5) a 1-3 = 5.32 V d. 10 = I(9.5) + 0.5 + $10.5) :5 z: 9,2“ :95 [51:15.1 = é=>IQ1 =IQ2=U.432111A 'v0 = 10 —J’{9.5) =5- V2 = 0.042 v L M=VE=OQDLDLDLOII Vq=IL4V Iii—1.4 = =0. I 9.5 . -D.6 [DI 2132:340—sflIQ] =I23 =7.6mA IQ; = In]. +Ipz — I = 2(7.6) - 0.589 =- 12; =14.6 mA h. V1=W=5V DimquomDaoE 10 = [(9.5] +0.6 + %(0.5] +5 =5 w f01=Ipr=é=>Ipl=IE3=DJEGmA IQ; =0 W. =10 — I(9.5)=10 — (0.451)[9.5) :5 V9 = 5.12 v C. K=5V.V:=UD1OE.D2,D30[1 v9 = 5.4 v 1-.— m i“ =5 =0.' 9 9.0 {m = =5- [21 = 7.5 mA 0..) [pt—=3 ID: mA (1. V1=5V,V:=2VD1OE,D2,D:OE V9 = 4.4 V 10 — 5.4 = = . 0 I 9.5 - 4.4 -0.5 —-2 = —— 1 =30 A I“ 0.5 : -D3-'-—m in; In: = In: -I=3.E -|].539=> IQ; =10}. mm 2.35 (a) DI MID! alelon So 192:0 lO—O.6-(-O.6)_ 10 NOWK=--0.5V, I'm: RI+R1 $539 In, =125mA Ifl =10~0.5—(125)(2)=> 9; =55 V ,8, .wflm ID, = I,“ - [m = 2.2- 1.25 =. ID, = 0.95 m (b) DII on, D, 011,13, ofi' Sofm=0 V1-4... __ R1 6 or _ [0.20.833MA I..=—4'4'('5)=£=o.94m gm. 10 ID: = I,u -1m = 0.94 —0.333 :5 ID, = 0.107 mA V, = .7an, -5 = (o.94)(s)—5=> VI = —0.3 V a ter '_ 1c lutions (c) All diodes are on P] =4.4V, V1 =_o.5V [0—0. —4.4 IA =05mA= RS = R, =10m I I," zols+05=lmA 2.1%: R2 R1 = Skfl -O.6—(-S) In2=1-5’"A=T=> 33:293‘9 vo=uz for —4.65<w<4.65 2.36 2.38 For v, small, both diodes off L 0.5 v0 =[ols+s)v, = 00909"I When vI — v0 = 0.6 . DI turns on. So we have v, — 0.09091), = 0.6 :3 v, = 0.66, v0 = 0.05 “W For B, on v, —0.6-va_ 1:, -v0 v0 . . -————-—-—-——+—--——=—— which yields 5 5 05 v _ 2v, -0.6 9 12 Whenzva = D2 turns on. Then 1:, = 5 HE, R: = 10 k9 o.6=-—V'1'2—':>v,=3_91/ mmm on =v2=o Now for v, > 3.9 rm = 10;“ — Elli-El = 1.35 — 1.0 m+vl'v° =i+h22£ In: =D.BEmA S S 0.5 0.5 Which yields 1:. R: = 10 1:11, B; = 5 kn. D: 0E. D; an VO=M;FOI' v,=l0::-vo=l.15V min 22 1o—o.7—§-1D1 Va = IR: — 10 => V! = —3.57 V +‘OV 2.39 15-f%+o.7) _ fawn-FEE 10 20 2D 15 0.7 0.7 1 l 1 £0 fi‘fi'fi~%(fi+fi+fi)-“(3€) 143:6.975‘1' -\ov For In > a. when D: um: 03' 10 —0.7 I _ 20 W = IUD k9) = 4.65 V = 0.465 mm Elggggggic Cirggit Analysis and Dcsigg, 2"d edition Solutigng Manual 2.40 - V 1., 10K VI ° V I04: VI _. V1. IDKID 10K :— a: 5.. V1=15V,V:=IDV Diodcafi V.=7.5V.V.=5V=>Vu=-2.5V Inna b. V1=10V,V5=15V Diodeon Va-Vb_Vb VI VI’VL 1o “'10 33+ 10 15 -15_ L 1 1 1 10+1u'v" 1o+1o)+“(1o+fi) 1 1 "D'5(fi+ E) 2.62 antic) => V..=s.55 v 15—6.55 6.55 In -- l—o-l—oafn —0.19mA =K=W—M V2 =0.6 V 2.41 93:0, D10EDaon 10-15 I: 15 = 0.5 mA u.=1o—(o.5)(5)=>uo=7.5vrorn<w<7.5_ Fww=30V. D: ofl’.va=10V Dem-minch whmV,=10 I_Pf-2.5 25 V, =10=I(ID]+2.5% I=0.75 mA 9: = (0.75)(25) + 2.5 = 21.25 2.42 I. V = V = CI h. V = 4.4 V Vi] = 3.3 V C. V9] = 4.4 V, VI: = 3.3 V [F Logic “1" It:ch degrade: as itgocs draugh additional logic 311:8. 2.43 I. Vm=Vgg=5V b. mam 21221-2; c-MM Logic “0" ligml degrades u 1: goes Ihmugh Iddifinnal logic gates. 2.44 2.45 2.47 (V: ANDVz) OR (V; AND V1} 111 - 1.5 — 0.2 —_- -——--—-—- = 2 = 0.012 I R+ w 1 mA 3.3 g — = 691."fl R+ 1” 0.012 ' = .7 1o - 1-1 _ v, I‘ u 75 a VR=IV. I=0.8mA V155 3 1+ (0.3){2} var.- = 2.6 V 2.48 In; =1111¢A 0.6 x 10" = (1)(1.6 x 10‘“) (1017}A A = 3.75 x 10“ c1112 ...
View Full Document

Page1 / 14

chap002 - Electrgnjc Circuit Analysis and Design, 2'“...

This preview shows document pages 1 - 14. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online