chap005

# chap005 - Electronic Qircuit Analysis and Design, 2'“1...

This preview shows pages 1–15. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Electronic Qircuit Analysis and Design, 2'“1 edition Solutions Manual Chapter 5 Exercise Solutions E5.1 (a) Vm = [.2V, VG, =2V Vn,(sar) =VG, —v,,, =2— 1.2 = 0.3 V ('1) VM 2 0.4 :5 Nonsaturation (ii) VD, = 1:: Saturation (iii) VD; =5 =3 Saturation (0)11", 2-1.2v. v6, =2v Vmbat) = VG, —v,.,, = 2 —[—1.2)= 3.2 v (i) VD, = 0.4 = Nonsaturation (ii) V,” = I =) Nonsaturation (iii) VD, = 5:: Saturation 155.2 C Kn = Wﬂﬂ I'll 2!. 3.9 8.85x10'“ c,, =ﬁg =ﬂ——~4———1=7.67210" F/cm 1“ 450x10 100 500 7.67 10" K, =(—l(--)(—x—)=:. It, =0.274mA/V2 2(7) — (b) v,,, =12v. VG, =2v (i) VD, = 0.4 V :5 Nonsaturation 7,, = (0.274)[2(2 —12)(0.4)—(0.4}1] => 1,, = 0.132 mat (ii) Va, :11! => Saturation 1,, = (027409-12)2 =9 1,, = 0.175 m (an VD, =5V =5 Samm— 1,, =(0.274)(2-12)1 =5 1,, = 0175 MA V,,, =—12v. VG, =2v (i) V,” = 0.4 V = Nonsaturation 1,, = (0.274)[2(2 + 12)(0.4) — (0.4)‘] = 7,, = 0.658 M ' (ii) V,” = IV :5 Nonsaturation 7,, =(0.274)[2(2+1.2)(1)—(1)1]=7 7,, =1.43 M (iii) V“ = S V = Saturation I, = (0.274)(2+ L2)1 = 7,, = 2.31M E53 v”, = IVA/,3, =3v .v,,, :45: V,” =45>v,,,(:ar)=vc, —v,,, = 3—1=2v Transistor biased in the saturation region 1,, = K,(v,,,— I,,)‘ = 0s = K,(3—t)‘ = K_ = 0.2 m N” (a) V5, = 2V, VD, =45V Saturation region: 1,, = (0.2)(2 ~ [)1 =- 1,, = 0.2 mA (0) V6I =3V. VM=IV Nonsaturation region: 1,, ={0.2)[2(3a i)(l)-(1]’] => 1,, =0.6mA BSA (3.) V”, = —2 V, V56 = 3V v,,,(sa:) = v“, +v,, = 3—2 =1v (i) 'Vm = 05 V =9 Nonsaturation (ii) V5,, = 2V :7 Saturation (iii) V5,, = S V :9 Saturation (b) VTP =05V, V“, = 3V V5,,(sat) = V56. +Vn, = 3 +05 = 3.5 V (i) V3,, = 05 V => Nonsaturation (ii) Vm = 2 V = Nonsaturatiou (iii) Vm = 5 V :2 Saturation E55 (a) A = 0. V0, (rat) = 25 --0.8 = 1.7 V For VD: = 2V. VD, = iOV =9 Saturation Region 1,, = (0.1)(25— 0.3)2 => 1,, = 0.289 m (b) J. = 0.02 v“ In = Ka{VGS _ VW)2(1+ 1V0!) For Va: = IV I, = (0.1)(25— 03)1[1+(0.02)(2)] =9 7,, = 0.300 M v,,=10v 1,, =(0.1)[(25—o.3)‘(1+(0.02}(10))] =9 1,, = 0.347 m (c) Forpart (a), 1:0: .- =N For part (b), 2. = 0.02 V-l . r, = (Va, ~ 14,)2 14 = [(0.02)(0.1)(25— 0.3)1" or r, = 173 kﬂ Electronic Qircuit Analysis and Design, 2"d edition Solutions Manual 85.6 V”, =Vm+y{ urn/ﬂI —Jﬁ:] 2¢f=o.7ov. vmo=1v (a) v“ =o=.vm=1V (b) 1/“ =11! . vm =1+(0.3s)[40.7+1— 0.7 :1 vm=uev (C) V” =4v. Vm =1+(035)[J0.7+4 -Jﬁ]= V”, = 1471/ 135.7 _ 1'11 _ = 40 ~ VG—[R!+Rq](l0) 5 [4mm 10) s VG=-1V V: = 10115—5 Then V0, 2 V5 —v5 = —I—(IDR, —5) = 4— IDR, Assume transistor is biased in saturation region r. = w..— 0124;“: 5 4-116, = (0.5)(0.1)[sz m 1]2 = 0.514; —3.s=0= VG, = 2.65V I, =(05)(2.1si5—1)2 = 1,, = 1.3611111 VD, = 10-1002, +30): 10-(136)(l+2)=1- VD, =592 v V.” >le:sar) , Yes 55.8 . R: V = H) -5 a (3&3?) 1 309 = - 5 — 0.714 V vk=3—1DRE=5-(L2)In 50 V51: = V: - Va = 5 —- (1.2119 — 0.714 = {.236 —(1.J]ID 4.236 - V55 1.3 1., = 11,0!” +19.)2 19: £286 — V35 = [l.2){0.‘35}>< mic - 21351—11 +1—11’) 1.235 — via = (0.311336 — 0.51}; + 0.3 0.313% + 0.413.; —3.905 = 0 -o.4 :1; 1110.412 + 4(0.3)(3.936) 2(03] Must use + sign :1» V55 = 3.04 V V31: = I; =10.25){3.04 - 1]:2 :19 =1.o4 mA V“, = 10 — IDOL: + R9} = 10 —(1.o-1111.1 +4) =1 V52 = 4.59 V V” > 1150(5111), Yes 155.9 1 ID = K.(Vcs 'Vm) 0.4 = 0.2511335 — 11.1112 =1 1x03 = 2.06 v . R2 . ._.= — 11 Pa- (Erna?) on R: -- _ - 2.05 = =? R2 — 53-1 kn EM V35 :4: VDD —IDRD 7.5 -4 RD ' 0.4 V55 > VM(mr] . ch => R5 = 5.75 kg €5.10 ID = “CS—Eglﬂ and v5 = -b'ss s 5 -'Vas 5° R5 ‘ 0.1 I. = am... — m)“ 0.1 = {0.0301(1/55 - 1.2)1 => V65 = 2.32 V SoRs=5ﬂﬂ=~£§=—26£ﬂ VD; = — Vs =9- VD =V35+Vg= 4.5—2.3? VD =2.13 51—h; 5—2.13 ‘ = = R2 =35.Z kn RD In 0.}. '= V“, > Vm(mt) . Yes E5.” I1: = i? and ID = K4135 +14.)2 0.12 = {0.05010}; — 11.812 V5.5- : 2.35 V R: = M :9 R.- = 53.75 m 0.12 V55 = 3 =20- [MIKE-PHD) 5 =20 2- (0.12)(sa.75) 40.121115 Rn = 20 - (O.12!(63.75) - B 0.11 :2? RD 2 36.25 kn Test ur ndc ta din 55.12 V V [o=_2%£§W 10=K.(V5:'Vm)1 : 10 — VG, = (10)(0.2)(vgs - wax!“ + v3") 10 .- Va: = 2v}; — 5V5: + B ZVéS —7Vc,-s —2 =0 7 a: Mm? + «(232 2(2) Us: 4- Sign: VEE -_.- V2: = 3.77 V 10 -3.7' ID = m-ﬁ—J— 9 I2 =n.a23 mA Power = In V95 = [D.623)(3.TT} = w =9..' V" V55 = 15.5.13 For VD, =22V _ 5-2.2 5 {a : KI(VGJ -VTN)2 056 = K" (22- 1)2 ID = [0:056mA K. =0-389mA/v=%._#ucu 2 W _ (339)(2) w L" (40) g 15—195 155.14 (a) The transition point is Van ‘Vm+vm[l+4Kw/K¢j 1+,me/KIL a — 1 +1(1 + \/0.05,’D.01) _ 1 + 30.115.10.01 1236 . _ ‘—‘P VI: — 2.24. \r v" = v0, =v,,-vm =224—1=> V0,:L24V (b) We may write 1,, = K_,,(Vm - mm)“ = (o.os}(224 w 1)’ :9 I, = 76.9 M 55.15 V = V” —vm +vm(1+./Km/K,L) " 1+:in/K4 25_5-1+i(l+m - Hump/Ki Cha ter 5: Exercise Solutions 25+2 Km/K.L=S+ Kan/Ki: WK. 4:53.167. Km mi = 2.73 b. For V; = 5. drivcr Ln nansanuatcd mgzon. foo = In; KID[2(VI _ Vnw )Va 4%1 1 = Kchm. "er. )1 K fawn -i-r'].,,,,)1/lg 41;] = [ch - v0 AIM]: at. 2.7312(5 - m1, — v3} = [5 — Va — 111 22.24% — 2.731;: = (4 _ Va)“ =15 - 8% + K? 3.75%? - 30.24% +16 2 0 30.24 *1/[30243‘ — 4(3.73]{16} v° = um] 135.16 If the n'ansistor is biased in the. saturation region 2 2 ID = K.(Vos _v7?l) = Ka(-VTN) ID = [0.251(15)’ =. ID =1.56 1113‘. VD: = Van — IoRs =10 - [1.56}[4} =5! Vpc = 3.76 VDS_>VGS -Vm, =-—Vm 3.76 > -[-2.5} ‘15.: - biased in the saturation region pa“; = Iprs = (1.56}[3.76) am 55.17 We have Va, 2 1.2V <VG, «V1w = —V1w = L8 V Transistor is biased in the. nonsaturation region. ID = KI[2(VGS ‘Vm We: '44:] and [a =MA=§£= R, 3 ID = 0.475 m 0.475 = K.[2(0-(-1.8))(12) —{12}‘] 0.475 = K_(238) = K, = 0.: 55 m I v1 K = E .fﬁz. " _ L 2 W_(l65)(2) W_ L— 35 = —9.43 icotronic Circuit Anal sis and Desi 2nd edition Solutions Manual 55.18 (3.} Transition point for the load transistor - Driver is in the. saturation region. loo = In; 2 z Kchso ‘Vmo) = Kchsn _VTNL) V0511”! ) = Vast. " Vrm. = "Vrm. avm=vbrva =2v Than v0, =5-2=3v. v0, =3v ﬁfm — 1)=(-vm..) 0.08 _V ——1=2=: V 2139‘! 0.01( " ) -"———— (b) For the driver: Va- =Vn ‘Vmo V” = IBQV, Va, =039V £5.19 (a) For V, = 5V , Load in saturation and drivcr in nous aturation . Ion = for. Km [2{Vi _ an )Va '16]: KIL(_VTNL )2 K.» [1(5_1)(0.25)—(0.2s)1]= 4 = E = 2.06 K..:. 1 (b) [a], = u(_me)2 : 0‘2 = Kill- [_{—2)] Km: =50yAIV‘ and Kw =103pA/V' E5 .20 (a) first = Kuawan ‘Vmiz = KuWan “er V6.“ :21? =VG“ =3V K a K 1 2—i'=—-‘—3—1 _-:.=_. ( ) Kali )= K“ 4 CD} ’9 = K.1(Vcsz 'Vm )2 But van =vw =2v 0.1: K_1(2— 1)‘ = K,2 =o.imA1v’ (c) 01: 1<,,,(2-1)1 = K_, zozmrvz 02 = riﬂe—1)! ==> K“ = 0.05m1v1 E521 For RD =iom.v,,,, =5v. and V, = w ID=S——1-=0.4mA 10 1,, = Kn[2[VG, -Vm)VD, 43:5] 1,, =0.4 = K_[2{5-—1}(l)-(1)2]: K“ =o_057mA/v‘ P = 1,, 4105 = [0.4)[1) = P =o.4mw E522 ID = K_[2(Vm — mm, 413,] = {ousonzm — o.r](0.35) - {035?} ID=U.319mA R _"'D_D-_V°_1°-0-35 9’ ID “ 0.319 => RQ = 303 kn E5 .23 (a) Transistor biased in the nonsaturation region ID = 5—1.5—V'2E =12 R In = K.[3(Va: "Vm )Vns 'V55] 12 = 4[2(5- 03m, Jugs] 4v; —33.6VD, +12 = o = v” = 0.374 v Then R=§Zﬂia R=251§1 12 -——~-- 55.24 3- Vl=5vu W=01M16m0ff=\$f22= s-v ID = Ku[2(V, -V,.~)Vo—V;]=—-R—Q- . D (o.os}(3u)[2[5 —1)V3 — v.3} '= s - v; 1.514,” -13'va + s = u 1- . oiL___. War/amino v“ " 2(1.S) Ig= Im = 3—3343 =- IB =12. =0.l\$3 mA [3. V; = V; = 3 V S-V R ° =2{Ic.[2(v, «mm-v31} n a _ vcl = 2(0.05](30)[2{5 —1)'VE: - va’] 3v: -2514. +5 = o Te§t Your [Anderstanding ghaptcr 5: Exercise SQIutions I Vo=w=w 2(3) IR = Listing: 15 = 0.160 mA In] ._ IQ: = 0.680 mA E525 s—v (a) n, = ° = K.[2(V2“Vm)Vo—V02] D s-(mo) 25 = Kﬂ[2(5—1)(0.10)—{0.l0)1]=> K, =0.248mA Iv“ a-Vn 25 5 — v9 = l2.4[3["u - W} 12.40;.” - 100.201, + 3 = u v 100.2 d: ./(l00.‘2)2 — 4412.4}(51 " em.“ = v9 = 0.0502 v b. = 2{0.24a){2(s n 1M - V92} E526 V056“) = V65 - V}: = —l.'.’ - [—‘i.5] => Vpshat) = 3.3 V Va.- ‘ (-1.0 3 I =I 5 1- = — D “( VP) “(1 (—40) 2. IQ = 6.45 111."; IU Ln E527 2 In =Iass(l - Va.— 3 _ 1.2 = 2 1- = Pr.- = -—0.564 V. Jun—— E528 \ ‘I ft; = 1053(1 - VP . 0.0 ’ 3 -I95\$(1' Vsptsau = H: — V55 = 3.8 - 0.8 Vgafsar) = 3.0 V‘ E529 [D = KM: _V:w)1 a. VG;- = 0.35 = ID 25(035 — 035]2 :5 ID = 0.25 {LA 1:. Vas = 0.30 :19 = 25(050 — 03.15.].2 ==» In =1.56 pA E530 Assume. th: transistor is biased in the saturation region. V65 : ID—Ipss(l- VP) 3—1150 V“ )231/ - 117v ' {—3.5} ———G“— ' = v; = 4’55 21.17 VD =15 — (0x03) = 3.5 V5; = 8.6 — (1.17} = 7.40 v v93 = 7.43 > v55 — Vp = —1.17 - (—3.5) = 2.33 Yas. the Hammer is biased in the saturation mgion. 55.31 V5 = [53.5 — 5- : (2.5)(D.25} - 5 V5 3 -4.375 V95 = 5 =:. VD = 5 — 4.375 =1.625 - _ ,_ RD = a ___1_5-° =, 3;, =1.35 m 2.; - — (20)“ _ _ 814-82 —'2=>R:+Ra-—-200kﬂ H; = V55 + V; = —1.42 — 4.375 = 4.795 . * R, _ pa .. (R1+Rz)(20}—10 -— 5.795 = (20] — 10 => Electronic ircuit naI sis and Desi n 2“‘1 edition E532 O—Vg V _:- V5=—VG; In: H- =% Va: : In—Inss(1—T};—) Vac V65 2 'I 4: i’és“ -—-—6(1— 4)_5k1 +1) 0.375ng - was + a = o 4 :l: 15 - 4(u.375)(51 2(0375} V55- : 3.85 or VQE =1.51V w..._.~...—r VG: = impossiblc V :3 V0 = I035 - 5 = (l.81](0.4} —- 5 = —4.275 Vsp = V; — Va 2 —l.8: - (—4.275) =1.81mA =- VEQ = 2.47 V Vsnuat) = Vp - Va: = 4 — 1.31 = 2.19 SD V5.0 > Vso[sat} 55.33 R: R; R". = R] = m: =100 kn 19.3 = 5 mA. V: = -Ians == -(5)(1-2} = “‘5 V VSDQ =12 V = V:- = Vs - Vsoq =—5—12=-—18V Rp=w=>ﬂg=ndlkﬂ V 7‘ v I5q=lnss(1-—Gs-) =95= (1—E V5;- = 0.333 V 'G = Yes + Vs = 0.838 — s = "5.162 _ L - — 5.162 = RLuocu—za} a R. = m m 1 R13; 31+ R: [337 -100)R; —.= (100}(357) = 100 => [357)R; = 10:1(337) + wait: = R; = i135 kn Solutions Ma 11:11 55.34 In = ((0/6, —v,,,)’ =9 5=so(v6, 43.15)1 =~ Vﬁ: = 0.466 V V,- = (0.0051(10) = 0.050 v =- VGG = V65 + V: = 0.466 + 0.050 =:. v9; = 0.516 \' V]; = '5 — (UJDSHIUU) a V; = 4:5 V VD; = VD — V; = 4.5 - 0.050 => Vii = 4.45 ‘5’ 135.35 I Jrr; = KIEWG: ‘Vrn )Vns 'Vnzrs] _—_ 100[2(o.7 - o.21(o.n— (01):] IngpA 2.5-0.1 =— = 1 RD 0-009 =>Rp 26 kn Electronic Circuit Analysis and chign, 2'” edigign Soluti0__ns Manual Chapter 5 Problem Solutions 5.1 (a) VD, =6V >VG, ‘vm =5—15=35‘v Biased in thc saturation region 1,, = {(491333sz1 =(o.25)(5—15)1 = I5 = 3.05 m (b) VD. = 25V <Vm(sar) = 35v Biased in nonsaluration region [a = K.[2(Vas —V1N)VDG “viii-1 1,, = (o.2s)[z(s—15)(25)—(25)‘]=a ID = 231 m ’.3§+03=VGS =9 VG, =2.38V V” (sat) = VG; —Vm = 233—03 =9 Vm(sar) = 1.53 V (b) 15%? sxva, 43): ’15 E+03=V6§ =9 Vm=354V vp,(saz) = 354-03 = mum) = 2.74 v 5.3 I. Vcs = U Vm[mr) = Va, 4’”, = 0—(—25) = 25 V L V9; = 0.5 V =7 Biased in amnion ID = (1.1mm - (-2.5})(u.5} — (05):} = IQ = 2.43 M ii- Vn: = 3.5 V =- B'uscd in summon ID = (1.1)(0 - (—2.50)3 : I2 = 6.33 [113- Vps=5v Smu(ii)=>12=6.8BmA II. Vas=2V Vadm) = 2 - (—2.5) = 4.5 v i. VD; = 0.5 V a Nonsnruration In = (1.1mm —. (—2.5})(o.5] - [0.5%] =5 12 = 1.63 mA V95 = 2.5 V =:» Nonsmdon ID = (1.1)[2(2 — (-2.5))(2.5] - (2.5)”) => ID =17.9 mA V55 = 5 V :Satuxation ID = (1.1)(2 - (—2.5);2 2 I0 = 22.3 111A 5.4 VD: >VG, —Vm =O—(—2) = 2 V Biascd in the saturation region k; w I” =3‘E(VGS_VTN )1 0.080 w 2 w 15: —' “- 0- -1 => —=9.375 [ 2 L1 ( L 5.5 C _ to. _ (3.9}(3.35 x 10-“) 5' °' - I; _ 4.50 x10-—' 2 = 7.57 x10" [=7ch to: K" =-———#"C" 2 L l 64 ==— . 10" —— 2(550)(7 67x )[4 J K, =o.399mArv= b. V55 = V55 = 3 V =5 SRMEDIDII ID = [cums — V,” )2 = (0399)(3 —03)‘ a’ In =1.93mA 5.6 _ (a, _ (3.9)(a.as x 10"“) "' C” ’ to, ‘ son at 10-! =- :43- = 5.75 3-: it!"l Finn2 I}: K; gala—9E 2 L =%(500)(5.7le0* 1%”): K,=o2ssmA/v* Electgggic Circuit Anglggis and Design, 2"” cdition Sglutions Manual b' ‘L Vas=01VD\$=5V I.. Vp=0=§V55=5V Mas-(sat) = D — (-2) = 2 V =1> Biased in snturlﬁon Biased in saturation ID = 2(5 — 0.5.)3 => 12 = 40.5 m 1,, a [memo --[—'2))2 =- 19 = 1.15 um I). Vp=-2V=\$V5D=JV ii. Vas=2V. VDs=1V =3 Nomamminn 14mm): 2 - (—2) = a V ID = 2[2(5 — 0.5)(3) — (333] Nomarundon =:- IQ = 35 mA 1;, ={O.233)l1(2 — (—2)}(1)- (1)2] \$115M c. Vn=4V=>VSD=1V 5.7 I =5 Nam“ ID = 2[2(5 - 0.5)“) - (1)2] (a, (3.9)(a.ss x 10-“) Cu=-;;=W :1g=16mA = 3.63 x10" cmm’ d. VD=5V#VSD=O=»IE=0 K “ 2 L 5.10 = i(600}(3.63x104)[%) Vm(sar) = V55 + VT; 2 (a) V (mt)=--I+2=9Vm(mr)=lv K —(1 04x10“)W 5” " ‘ ' (b) Vm(5ar)=0+2=>Vm[Jar]-=2V (c) V5.0(sa1‘) = 1+ 1 =1: Vmﬁar] = 3 V 10:32.0, "' )2 k' W 2 k' W 2 :s m s I” ﬁt“: “’11) =E'I'F’wimﬂ 1.2 x10“ = (1.04 x 10‘ )W(5 .. 1)” 0940 2 a—W = 7-21 m (a) I» {—2 1510) = 0.040 5.3 (b) 1,, = [T 5}(2)‘ = ID = 0.43 m Biased in the saturation region in both cas . k’ cs (1:) 1 = 99—19 exa)‘ => 1, =1.08 mA I =4-EW 1-19,)1 " 2 —--—— D 2 L 36 (1) 0225=(L'2‘“’11E](3+v,,)' 5.11 Vm(sat)=vm +14, =0+2=2V (2) 1.40 = [1”?ng + 11',.,.)2 V = V . ' Take ratio of (2) to (I): (a) m 1 I‘io1'1530.1r111:mn2 L40 (4 W"): 1,, = K,[2(V,G +v,,)vm '11155] ———= 6.222 = -— 0225 (3+v,,)‘ In =(05)[2(0+2)(1)—(1)‘] = 1., =15 m {——— _ _ 4 +14, _ 6222 9 149 - 3+Vn. = v" — _2'33 v (b) V“, = 2 V . Saturation Then 1,, z K412” +11”)1 = [05)(0+ 2)1 => . 0.040 w 1 w - 0225= __ _ _ __= I *ZmA [ 2 IL}3 2.33) =: L 25.1 D _ 5.9 (1:) V” = 3 V . Saturation 51111151501). ID=2mA Vs=5V, Va=ﬂ:V5a=5V m v". =—05v =Vm(sar)=V,G +V,, =5—0.5=45V _ Chaptcr 5: Problem ﬁglutions “ e“ _ (1950.85 :1: 10"“;- 10, ‘ 500 11-110“ = 6.90 x 10" F/cm’ 1:, = (11.60,) = (5751(090 x104) => 45.5 uA/v‘ 2;, = (11,0...) = (375305.90 3410-8) :- 25.9 FAIV" _ 0.0259 " ’ 2 Want K,l = Kll r k' =_L[.“i) =41.3 2 L ,, 2 L , 40.3 W I W _ N — 41.3 5 — 1.71 :- L=4um WN=T.051.1m 5.13 VG; = 2 v. I5 = (0.2)(2 - 1.2)“ = 0.120 mA 1- 1 1 : r '8] kn — 2 ———-—- = [ ° .11; (0.013(0123} J—-—-—-—- vcs :4 v. I; = (0.2)(1 -1.2)‘ =15? ma 1 ‘ (0.013(1571 1 1 ' =—= V = 0,. A (m) =1» d 100v n: :0: Ta = 63.7 [(0 5.14 10 = [£280- 4)(3--0.0)2 =(0.11s)(3—013)1 =2 I, = 0.774 m ,. .. L =, = L = .___l ' 111,, r,1,, (200)(0.774) Mmax} = 0.00646 V " V‘ - 1 = I = V‘(mm) = )(319): KP =41_3;1A/v1 = Kn 5.1 s V... =vm +4.12%. +0., -,(2¢,| AV“, = 2 =(02)[ 251, +125, —J2(0.35)] 25+ 0037 = ./2(o.35)+v,, = V" =710.4 v 5.16 Mm = y[ 201, +03, “[E] 1.2 = y[.f2(037) + 10 - ./2(0.37)] = 3142.42) Then 7/ = 0.496 v "1 5.]? a. Va 2 c.3111, = (5 x106)(2?5 x 10-“) Va = 16.5 V 5.18 Wan: VG =1311241= can. =(6 x 10‘)!» 10, = 1.2 x 10" cm = 1200 Angstroms 5.19 . R: 13 . = = = . v V“: (R.+R,)VW (18+32)(1°’ 36 Assume transistor 01:01:11 in saturation ﬁssion V V —V 1 I =_..s =-—G 05:11:01 - ) D R: R: 65 IN 3.6 — v.35 =10.5)(2)(V55 - 0.11)2 = v3.5 - Lava: + 0.54 V55 — 0.01/65 — 2.95 = 0 0.5 0.53 42.90 V“: :1“ }+( ) 2 :9 V5: = 2.05 V VG — V55 _ 3.5 - 3.05 Rs - 2 Va: = V1212 — 10(30 + Rs) =10 — (0.775114 + 2) In: =>fp=0.775mA = VD = 5.35 V V9,- > V55[Sll) Electronic Circuit Analysis and Design,l 2'“1 edition Solutions Manual 5.20 R ' 6 V = 20 -10: _ _ ” [R,+R1 ) [n+6 20) 102° Vc=-4V Assume transistor is biascd in saturation region ’0 =T=T=KJVGVVWV K, = [93299.](60) =9 [.3 mA/Vz —4 - Va, + [0 = (1.3)(05)(v55 - 2)2 = 0.91%, — 3.6V“ + 3.6 Than 0.9%; - 2.5%, — 2.4 = o = 2.6: (2.5? +4(0.9)(2.4) VG, W: v6: = 3.62V Va-V§E+10 = —4—3.GZ+10 Rs 05 In =4.76mA VD, = 20— [DMD + R3) = 20—(4.76)(l.2+05) => VD, =11.9V VDs =11.QV>VG, 4/," =3.62—2=1.62V ID: :9 5.21 IO—VS Rs Msume. transistor biased in sanitation region R; ) = - 10 V" (R: + R: (20) 22 = (a + 22) [20) — m =3 Va =43? V ID = = KP(VSG +1)??? V; = Va- + V56 10 - (4.57 + Vsa1= (1)(0-5)(Vsc - 2): 5.3a — V5.5 = 0.5(V5’G - Wsa + 4) 0.5ng _ V55 — 3.33 z u 1: Ju}: + 440530.33) 2(0.5} => V39 = 3.77 V Vsa = Ip=m_“.%i3_'711=12=3.12m V39 = 20 — 19(35 + Rn} a 20 - (3.12)(n.5 + 2} => Vgg =11: V '50 > V506“) 5.22 vs = 0,. VSG = Vs Assum: sum-man mgion In =04: {CAVE +V,.,,)1 0.4 = (0.2)(V3 — 0.3)” 0.4 V5=HE+03=>V5=121V Va = Inﬂa — 5 = (mus; — 5 = —3 v V59 = V5 -— VD = 2.211 — (*3) =5 Vsn = 5.21V VSD > V55 (55.!) 3.23 VDD = I‘DQRHHJ",m +1,,QR_T (l) 10=1m[5)+5+v65 and k; W Ina = [\$IE}VGS " VTN )2 or (2) 1m =[9:9:_°K%)(vﬂ —1.2)2 Let va,=25v Then from(l). i0=IDg(5)+S+25=> IU=05mA Then from (2), 05 =[\$(;£91%}25— 12}1 = W —~=9.36 L {MRS=VGS=RS=Y-‘i=3-§=a R5=5kﬂ I” 05 —— = (05)(o.os) = 0.025 M Then RI+RI=FIO~:—5=400kﬂ [RI—:32:va = 2v“ :1. [rig-Jan) = 2(25) => RI=R1=2OOI¢Q 5.24 R: VG = (R! +R2){10)— s 5.5 ._ (Imam) - s _ —2.25 V V -V -—5 z ="—“'—"'6 Z: ( )=K.(Vas" m) Ass:me mists: biased in ma.an region In - 2.25 — Va: + 5 = (0.5)(n.5)(vos — (-1])' 2.75 - V65 = [0.3)(Vég + was +1} Cha ter 5: Problems lutions 0.3%; + 1.6Vas — 2.45 .—. o —1.5 :h “(1.5)” + «0.3)(245) V55 = 2(1):.) :3- VEE =1.24 V -2.25- 1.21 5 ID = —:—=:-JD =2.52mA 0.5 V95 = 10 — Ia(Rs + Rn] = 10 — (2.523015 + 0.3) => VQE 1‘: 5.47 V V95 3* Vpsﬁlt) 5.25 20: {MRS +V5M HDQRD (I) 20:11” +10+IWRD EDI-example. let {be =08mA and V5,; =4V —.——_._—'—-' Then 0.3 = {Eli}: -31 = .“L = m 2 L L IMR5=me(o3)R5=4=» Rg'zsm From(1}20=4+10+[0.3)Rn.-—: Ro=75kﬂ _ 20 —m+m I, =(os)(o.1)=> R, + R, = 250 m [ETR1}(20)=2V,G =(2){4) .‘L = ~ - 250(20) s=> 3,-100m. R2—1som 5 .26 (a) (i) IQ=SO=SDO(VG,—L2]1=> v63=1516v VD, =5—(—l516)== VD, =6516V (iv) In 2 1 =(05)(VG, — 12)’ = v“ = 2.51V v0, =5—{—2.61) :3 VM = 1611’ (b) (i) Same as (a) VG, =1!” =1516 V (iv) V,” = VD, = 2.6! V 5.27 In = _VTN)2 n.25 = (0.2)(Va5 — M)a V55: %%+0.6=-V55=1.72V =9- V: = —1.72 V VD = 9 “ [0.35)(24] =5- VE = 3 V S .18 5—1/5 5—1 . In= =M= 5M Rn RD VG=0 ID = {go/Gs 4),”) => 1/; = 4.11 V __ —3.11—(—-5) In —0.8—- R5 1 => 0.3 = (0.4)(VG, - 1.?)1 5.29 V0,, =Vm +1.30}? 9 = 25+(0.1)R = R =65 m k’ w 1 [De = +Vﬂ ) (0.1) =[92—151%](25- 15]1 = 1E— = 3 Thenfor L=ﬂm. W=32ﬁm 5.30 5 = 1903, Wm = :W(2]+25 1m =I.zsm l0 RI+R2 100 = Igor” +Vn.)1 = (125)[0.1) =5 R, + R2 = 30 m In: 1.25 = 0.50!” +15)‘ :9 1:255 — 15 = v“; vm=o.osuv ' Va =11, -v,c =25—o.03u= 2.42v _ Ra , s 2.42 =[ﬁ](1o)— s = so R, = 59.4 m. R. = 20.6 m 5.31 19",: o. [—g’ﬂ 20):: 0.30m1v' In: Kp(VEG+VTP)2 05=ojo(v,a - 1.2)2 :1. v,,S = 2.491; v, =Vm =2.49V 5~v - . = R , 3R: = 5 249 S v - _ _ = D ( =«5-—3=I Eur—4m I, 05 —— 1,, = R, = 5.02 m Ru Electronic Circuit Analysis and Design, 2"" edition Solutigns Manu___a1 5.32 _—Vsp—!—-10} __—ﬁ+10 10- RD -"-'*D-- RD =5 RE=Oﬁkn 1,, = K,(V,G urn)“ = s = 30;” 433‘ V5.5 = «if-+1.75 = 3.0-1 V 3 V; = «3.134 R: = 10 - 5 = —3.04 VG (R: + R:)( ) R“. = mm: = so Inn _1_- (sumo) = s —3.u4 = R. = 403 m R: “’33” = so a 1:; = 99.5 1:11 405 + R: 5.33 (a) K... =[%9)(4)=120er1 If“ =[%)(1)= 30m1v’ For v, = IV . M I Sat. region. M 2 Non-sat region. 1m = 101 343('Vm X5 " Va} — (5— var] = 120(1‘ 0'3): We ﬁnd v; -6.4v0 +7.15 = 0: v0 = 4.955V (b) For u, =31! . Mt Non-sat rcgion, M2 Sat. region. I“ = InI 30[—(-13)]’ = 120[2(3-os)va 4;] We ﬁnd Jeni-17.6110 +324 =0: v0 = 0.19311 (c) For v, = 5V . biasing samc as (b) 3 4—43)]1 = 120[2(5-os)va 43] We ﬁnd 4v}, - 33.6% + 324 = o = v0 2 0.0976 V 5.34 For v, =5V . M. Nomsat region. M1 Sat. region. ’01:“): [%1[2(5 - US\$115) - (0.1 5?] = (1)[<J - (-33]! which yields = 3.23 1 5.35 21. M1 and MI in saturation KuWasn "mef = Knnwcr: ‘Vm1) K.“ = Kuzv Vm = Vm: =3- Vgﬂ == Vgsa = 2.5 V, W; = 1.5 V ID = {15)(4a)(2.5 - 0.3? .—.> IQ = 1.73 mm. W W _ _ V <V b. (L)1>(L)z=ﬁ (:51 as: warm — o.a)’ = (151mm - 0.2.)“ V051 = 5 - V651 Law/gs. - 0.5] = (a — V551 — 0.3) 2.63VGSi = 5.50 =- Vga = 2.09 V 1 V25: = 2.91 V W: = V531 = 2.09 V ID = {15)(15)(2.91 — 0.3)“ =- 19 = 1.0 mA 5.36 Each transistor biased in sum-anion. Ma: V1=Vc=sa=2V W ID = 0.5 = 0.01%?) (2 — 1)1 J W —- = 7. =o-(L) EB M2: V652=W-V;=5-2=1V ID = 0,5 =0.013(E) {a - 112 L 2 W =5 2 - 6.94 M1,: Vasx=ID-V;=ID-5=5V 1;, =0.5 -_- o.n13(£) (5 — 1)2 L 1 =3. = 1.7! 5 .37 M L in saturation M n in nonsaturatic-n [Elwm—vm)‘ L = [Iglpwm — 14,4»)an - Vgsoi (1}(5 — 0.1— 0.3)1 = D [2(5 - 0.3m.” — [0.11:] 15.31 = D[o.sa] (wan-a Qhaptcr 5: Problem Solugions 5.38 M L in saturation M D in nonsaluration W [EJLWML Jim): 4% (nu—sf w = — 25—0.s o. —— _ ‘1 (L)D[( )( 05) (005]: 32¢ = I331.411'5] 5.39 [up = “(Van ‘er = Kach “Vm )1 V651 = 5 - Vasa 400 ﬁfs - V653 - l) = (V55; — 1) 2.4“!ng = 6.56 => V953 = '2_76 V Vgﬂ = 2.24 V V522 = VQEJ = 2.76 V IRE: = “(Von ' Vm )2 = (0.2)(2.76—- 1)2 [up = 0.620 m If; = 1?qu -v,,,)‘ =(o.1)(2.76—1)’ IQ = 0.310 ml I9 = Kama-t 4’11”: => 0310=(o.03)(va,l — 1)’ 0310 Tim Van = 11% + 1:: V6,. = 2.97 v 5.40 JD=Vgp—Va 3—0.1 =--—-—-=0. 9 RD 10 4 mA Transistor biased in nonsnmrarion 5.41 5: JORD+VY+VM s=[12)R, + l.6+0.2=> R0 = 267 Q h; w in = (Exam, — vm)‘ 0.040 W 2 W 12: —.-.—..— _ 5_, _= [ 2 IL 03) = L 34 5.42 5=V_u,+l'p!§tb+V:r 5=0.lS+(lS)RD+l.6=: RD=217Q k’ W 2 ID=[TPII VSG+VTP) W 5:993?- Eja—osfa —=35 2 L L 5.43 Vpsﬁlt) =VGS —Vp 50 V05 2- Vpsﬁsat) = —Vp, In =-" 1255 5.44 V3583!) = V53 -— VP = Va: + 3 = Vaduz) ll. V63 —1 2 b. In —Inss(1—V—P) —-6(1-_—3) =>In =16? [11A -2 2 c I3 = 6(1‘ —3) :2- IE =D.66’rmA d In :0 5.45 2 In = Ipss(1— F 1 2 8=I 1——- 1 Dss( VP) ;/ = 2.055 :5 V: = 3.97 V P l 1 2.8 = 1555(1 — = Ipssﬂljﬁc) a lei-525.0 mA 5.48 5.46 Elcc ronic ircuit Anal sis and Desi n 2‘“I edition 5.50 1/5 = -V135. V513 = Vs - Vno WI!“ V50 2 V5.0(Slt) = VP - V55 V5 - V131: 2 1"? - V05 — V55 — V513 _>_ VP "" v6.5 => V213 <_ ‘VP 50 Van < -'2.5 V V 2 1'9 = 2 = 113550 - 1,23) V95 2 . 1 . ._. ._ —— V :: .D \I 2 (1 2.5 ) ‘4 as 1 5 =7 V: = -I.OG V ID = K.(Vos ‘Vm)2 185: K,(035—v,,,)2 862: ic_.(c1_'5—1-',,,)z Then 5.5! 2 1 5 OBS—V i-=112145=£-—--~——Iﬁ—)T:a 1:,M zcmw 3‘52 (DSO—Vm) --—-—— 135: 1r(,,(-:1.35—11.221)2 :5 K, = Luau/v1 ID = [(0,155 - m): 250= («oars—0:14)2 =5 K2096] mAle 5.49 V55 2 _ V _ Vcs ’9 ‘I"“(“T¢) - R.- ' Rs Va: 2 _ VG: l0(1- :? — - .2 2Y0: V315) _ = -V 2(1+ 5 + 25 as l 25 V35+§VGS+2=0 5.52 2V3, + 45%; + so = o —45 :1: 1/115)“ - 4mm) Q V9: = —l.].7 V Vas 1.17 g _— = ——-- I = 5.85 I“ R5 0.2 5-9-———-m‘ VD = 20 — (5.55)(2) = 3.3 v VD5=VD — V5 = 3.3 — 1.17 => V2: = 7.13 V Solutions Manual Vas=VDD-Vs 8=lD—V5-=>V5='2V=IDR5=(5}R5 ). 2 ) Let [1:155 =1C' mA =5- 3: =04 kﬂ _ V In =1055(I - as V;- 2 ) 3V}=—3.41V 03+Vs=d1+3=lv VG=V . Hz \ . 1 1/ = = _ G (R,+R:)LDD R1 (500}{10) => R] :5 Mn ‘Rm ~ Von V5 = 20 -(5)(0.5)=17.5 V VG = V5 + V55 =17.S +0338 213.3 V R: . 1 V = V = —- m - V G (R1+R:) on El R DD 111.: = RL{100)(20)=> 111 =109 m I 1093.: 109 + R: mum V65 7: VP 2 ) =1. Vgc = 0.465 V ID = 1.955(1— VGS 5:7(1 3 Vsn =VnD-ID(Rs+R-DJ e =12—[5)[o.3+ R9) =- Ru = 11.9 1111 V5- =12 - (5)105) = 10.5 v VG = v; + Vcs = 111.5 + 0.455 =1o.965 V R: ) = v VG (R1 + R: DD 10 965 — (%){12} =1- R; = 91.4 m ____.__.__ Qhagtcr 5: Emblem Solutions 5.53 R: ) 60 V = = 5 (Hall: "D (140+sn)(2ﬂ) :9 Vi = 6 V V65 V35 16(l+ 2 +76— —5—-Vas vés+9vas+m=n —9i m9)2 -4(10} 2 => V95: —l.30 -1.30 W 19:3(1-({_“) =IQ=3.65mA Vns = VDD - [0(35 + Ra) = 2a — (3.55}(2 + 2.7) V1): = 2.35 V V95 3- V9563!) _-. V65 — V; = —1.30 - (—4) = 2.7 v (Yes) 5.54 Vns = Wan - 15(R5+Rp} 5 =12 —- ID(U.5+1) =5 IQ = 4.67 mA V5 = I535 = (4.57)(0_5) :5, V; = 2.33 V . R: . 20 P = ----—— 1; = — a (314-32) DD (650+ZU){12) =. VG = 0.311 V was = VG -— V5 =1 -' 2.33 :- Vg: = -132 V 2 ID = 1055(1- 2 4.57 = ID(] -( 1-32)) => V}: = —5.75 V VP 5.55 V I ID = fuss-(l - VG: =0 P IQ = 12:: =4 mm 5.56 Vsn =VDD—InRs lO=20—[I}Rs=> RE: 10 kn V05 '20 R = ___.. = __.. ._. 1 + R: I 0'] 200 kn V65 2 ID = j (1- _) ass VF V05 2 1:21—T =>Vgs=D.SEISV Va = V5 + Va: = 10 + 0.535 =10.53'5 R V; = ( 1 )Voo R: + R: - _ R: __ 10.336 _ (200)00) => R: - 106 m R: = 94 kn 5.57 VDs = Von - IDIRS + RD] 2 = 3 - {o.o4n)(1o «1- RD] => RE =15 m [D = ICU/GS 'Vm }2 4n = 2500/55 — [1.20)2 =. V9; 2 0.50 v VG = V55 + V; = 0.50 + [0.040)(10) = 1.0 V R: . V = P 6 (R1 + R?) DD R: 1= TEE (3)=‘Rz=50kﬂ R1 = 100 5.58 For Va = 0.70 V = VD, = 0.70 > Vm (sat) = V55 — Vm 0.75 — 0.15 = 0.6 Biased in the samration mgion _ Von—VD, = 3-0.7 I _ :9 I =46 " RD 50 9—.ﬂ 1,, = quﬂ 4 m)‘ =: 46 = Maris-0.15)1 = K=123pArv1 ...
View Full Document

## chap005 - Electronic Qircuit Analysis and Design, 2'“1...

This preview shows document pages 1 - 15. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online