prob5sol

# prob5sol - Math 151 Spring 2008 Problem Set 5 Solutions...

This preview shows pages 1–6. Sign up to view the full content.

Math 151 Spring 2008 Problem Set # 5 Solutions Trigonometric and Hyperbolic Integrals and Substitutions 1. We set u =s in( x ) so that du =cos( x ) dx : Z cos 3 ( x )sin 2 ( x ) dx = Z cos 2 ( x 2 ( x )cos( x ) dx = Z ¡ 1 sin 2 ( x ) ¢ sin 2 ( x x ) dx = Z ¡ 1 u 2 ¢ u 2 du = Z ¡ u 2 u 4 ¢ du = 1 3 u 3 1 5 u 5 = 1 3 sin 3 ( x ) 1 5 sin 5 ( x ) . 2. u x ) so that du = sin ( x ) dx : Z sin 3 ( x )cos 4 ( x ) dx = Z sin 2 ( x 4 ( x )sin( x ) dx = Z ¡ 1 cos 2 ( x ) ¢ cos 4 ( x x ) dx = Z ¡ 1 u 2 ¢ u 4 du = Z ¡ u 4 u 6 ¢ du = 1 5 u 5 + 1 7 u 7 = 1 5 cos 5 ( x )+ 1 7 cos 7 ( x ) . 3. u inh( x ) so that du =cosh( x ) dx : Z cosh 3 ( x )sinh 2 ( x ) dx = Z cosh 2 ( x 2 ( x )cosh( x ) dx = Z ¡ sinh 2 ( x )+1 ¢ sinh 2 ( x x ) dx = Z ¡ u 2 +1 ¢ u 2 du = Z ¡ u 4 + u 2 ¢ du = 1 5 u 5 + 1 3 u 3 = 1 5 sinh 5 ( x 1 3 sinh 3 ( x ) . 1

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
4. We set u =cosh( x ) so that du =sinh( x ) dx : Z sinh 3 ( x )cosh 4 ( x ) dx = Z sinh 2 ( x 4 ( x )sinh( x ) dx = Z ¡ cosh 2 ( x ) 1 ¢ cosh 4 ( x x ) dx = Z ¡ u 2 1 ¢ u 4 du = Z ¡ u 6 u 4 ¢ du = 1 7 u 7 1 5 u 5 = 1 7 cosh 7 ( x ) 1 5 cosh 5 ( x ) . 5. Z cos 2 ( x ) dx = Z 1 2 (1 cos (2 x )) dx = x 2 1 2 Z cos (2 x ) dx = x 2 1 2 μ 1 2 sin (2 x ) = x 2 1 4 sin (2 x ) μ = x 2 1 2 sin ( x )cos( x ) . 6. u x ) and dv x ) dx so that du x ) dx and v = Z cosh ( x ) dx x ) . Thus, Z cosh 2 ( x ) dx = Z cosh ( x )cosh( x ) dx = Z udv = uv Z vdu =c o s h ( x x ) Z sinh ( x x ) dx o s h ( x x ) Z sinh 2 ( x ) dx o s h ( x x ) Z ¡ cosh 2 ( x ) 1 ¢ dx o s h ( x x )+ x Z cosh 2 ( x ) dx. 2
Therefore, 2 Z cosh 2 ( x )=cosh( x )sinh( x )+ x, so that Z cosh 2 ( x )= 1 2 cosh ( x x 1 2 x 7. We set u =s inh( x ) and dv =sinh( x ) dx so that du =cosh( x ) dx and v = Z sinh ( x ) dx x ) . Thus, Z sinh 2 ( x ) dx = Z sinh ( x x ) dx = Z udv = uv Z vdu i n h ( x )cosh( x ) Z cosh ( x x ) dx =c o s h ( x x ) Z cosh 2 ( x ) dx o s h ( x x ) Z ¡ sinh 2 ( x )+1 ¢ dx o s h ( x x ) x Z sinh 2 ( x ) dx. Therefore, 2 Z sinh 2 ( x x x ) x, so that Z sinh 2 ( x 1 2 cosh ( x x ) 1 2 x. 3

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
8. We set x =3sin( u ) so that u =arcsin ³ x 3 ´ .dx =3cos( u ) du and p 9 x 2 u ) . Thus, Z p 9 x 2 dx = Z (3 cos ( u )) (3 cos ( u )) du =9 Z cos 2 ( u ) du μ 1 2 cos ( u )sin( u )+ 1 2 u = 9 2 cos ( u u 9 2 u = 9 2 Ã 9 x 2 3 ! ³ x 3 ´ + 9 2 arcsin ³ x 3 ´ = 1 2 x p 9 x 2 + 9 2 arcsin ³ x 3 ´ . 9. We have x 2 4 + y 2 9 =1 y 2 9 x 2 4 y 2 μ 1 x 2 4 Therefore, the upper part of the ellipse is the graph of y =3 r 1 x 2 4 = 3 2 p 4 x 2 , 2 x 2 . By symmetry, the area of the region inside the ellipse is Z 2 2 3 2 p 4 x 2 dx = 3 2 Z 2 2 p 4 x 2 dx x =2sin( u ) so that u ³ x 2 ´ ,dx =2cos( u ) du and p 4 x 2 u ) . It is practical to implemen t the de f nite integral version of the substitution rule: 3 2 Z 2 2 p 4 x 2 dx = 3 2 Z arcsin(1) arcsin( 1) (2 cos ( u )) (2 cos ( u )) du =6 Z π/ 2 π/ 2 cos 2 ( u ) du Ã 1 2 cos ( u u 1 2 u ¯ ¯ ¯ ¯ π/ 2 π/ 2 ! μ 1 2 cos ³ π 2 ´ sin ³ π 2 ´ + 1 2 ³ π 2 ´ 6 μ 1 2 cos ³ π 2 ´ sin ³ π 2 ´ + 1 2 ³ π 2 ´ π 4
10.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

## This homework help was uploaded on 04/21/2008 for the course MATH 151 taught by Professor Geveci during the Winter '08 term at San Diego State.

### Page1 / 19

prob5sol - Math 151 Spring 2008 Problem Set 5 Solutions...

This preview shows document pages 1 - 6. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online