Math 151 Spring 2008Problem Set # 10Sequences and Taylor PolynomialsStarred Problems will be turned in on Monday, April 7SequencesIn problems 1-4 list thefirst 4 terms of the sequence{an}.1.an= 2n−1, n= 1,2,3, . . .2.an=nn2−1, n= 2,3,4, . . .3*.an= (−1)n13n,n= 0,1,2, . . .4*.an=n2sin³(2n+ 1)π2´, n= 1,2,3, . . .In problems 5-21, determine thefinite or infinite limit, if such a limit exists. You need to displaythe steps that lead to your response, and provide an explanation if you claim that the limit doesnot exist.5.limn→∞5n2+ 92n2+ 16*.limn→∞n2+ 104n3+ 17.limn→∞s3n29n2−28*.limn→∞cos (πn)9.limn→∞sinμπn6n+ 2¶10*.limn→∞(−1)nnn+ 411.limn→∞(−1)nnn2+ 412*.limn→∞μ−34¶n13.limn→∞μ53¶n14*.limn→∞n3−12n+ 10015*.limn→∞μ−32¶n16.limn→∞enn17*.limn→∞n2e−n18*.limn→∞n210n19*.limn→∞ln (n)√n20.limn→∞n1/3log10(n)21*.limn→∞μ1 +