Solution of MUNSON - .1 I 1.1 The force F of the wind blowing against a building is given by F = CDPV A\/2 where Vis the wind speed P the density of the

Solution of MUNSON - .1 I 1.1 The force F of the wind...

This preview shows page 1 out of 1326 pages.

You've reached the end of your free preview.

Want to read all 1326 pages?

Unformatted text preview: /.1 I 1.1 The force. F. of the wind blowing against a building is given by F = CDPV' A/2. where Vis the wind speed. P the density of the air. A the cross-sectional area of the building. and CD is a constant tenned the drag coefficient. Detennine the dimensions of the drag coefficient. Qr F i: ML T-'­ -3 e,;, (VlL Thus) C/) -J; 7-1 V.= L I/�L2. (!YI L T �2)/UML"l)( L T -,)2- (L")] Hence CD J is dimensionless. I-I =: M LO TO 0 /.2. I L2 YeJify the dimensions, in both the FLTand MLT systems, of the following quantities which appear in Table 1.1: (a) vol· ume, (b) acceleration, (e) mass, (d) moment of inertia (area), and (e) work. Volume L3 t-ITn! (6 ) (�) L T -, -=- 1ir1.a.sS or- (vi) r�'� of- c.hl/n1� w;tn T M F"':" M L rm;l5S= !=L-'TZ mOI7lt!I'Jt- 11- ,nu!:,p.. L T -.2. � � yt/o,/';'y 7-2 (Art'.c.) !=L WtN"k: /-1.. :: � se�l1d (L 2. ) (L l7111mt'"f "f 2) . L If art!£. 1.3 I Determme the dimensions, in both the 1.3 FLT system an<L the MLT system, for <a) the product of force times acceleration, (b) the prod- (a) uct of force times velocity divided by area. and <c) momentum divided by volume. (b) (C) f�Y(.e Since ..J.crc.e I( x cccce/eraf.11!"/ ve/c>cd'j a reA. (P)(L T-;J.) - .:... (P)(LT-') L2- � volume � Ve /oci.f� V&)/Unt� rnp�s " (FT2L-t)(L 7-1) L3 /-3 -,2 -' r-I PL . (I1f.T-1(LT-').=.. rn �meni-llm FL 7 I1T-3 1.4- I VIVerify.lhe dimensions. in both the FLT system and the MLT system. of the following quantities whicA-.appear in Table 1.1: (a) fre­ ( a.) quency. (b) stress. work. (b) .51-r�ss - (e) strain. (d) torque, and (e) �rce - Ol"t!'tt - M L rl.) Since. F-'- .5.J-r�5s ;" C)"'1.n1t!' (c ) I", F L2. ML :;- r-2 L"- /e/lji"h ...: It'l1fll1 2 FL - 1'1 L L L FL = (e) work = ..force. � dis/t,nu!. - I-lf FL . -I T-2 /.5 I 1.5 If u is a velocity, x a length, and t a time, what are the dimensions (in the MLTsystem) of (a) aulat, (b) a'ulaxat, and (c) I (aulat) dx? (aJ (h) (C) PtA.. dt:�zu. h(}t f dt; Ju. -1 LT T - - - dx -1 L T {L){T} . - L - T -Z T- . - (iT-I) fL) T /- 5 2 - L 2 T-.2 /. 6 I (b) 1.6 If p is .8 pressure, Va velocity, and p a fluid density what are the dimensions (in the MLT system) of (a) pip ' pVp, and (c) p/pV2 ? (a. ) 1- 6 1.7 I 1.7 If V is a velocity, e a length, and v a fluid properly (the kine­ matic viscosity) having dimensions of L2T-', which of the fol­ lowing combinations are dimensionless: (a) vev, (b) velv, (c) vtv, (d) Vlev? (a.J (h) (C: ) (d) VJ.-z/ - (L T-,)(L)fL 2.r� vj -V V 2 7/ V ).7/ (L 7-')( L) (L r-I) - - '2. . (L T-� '2.(L 1) -. 2. (L T(L )(e r') - LOTfj r-'j � -, /-7 L � T- l -2.. tltmen�iot1 ( dim�nsicm less) 3 L"TL fn" f less) (nof dimfns/on/(ss) (no! dlfnen sion/e:'j ) 1.8 T 1.8 If V is a velocity, detennine the dimensions of Z(a I) Z, a, which appear in the dimensionally homogeneous equation V v == = - (o(-I) r and G, + G -t- G [L T-J == [r] [0< -iJ [6] Since. t:he eltU, Stll11e ierm 1Jt� etglllb!:,dJ"" musi til ;''It'n5Ipn.sI It: ;; //t!JtVS i:h,. i E...:: 01. I'; -t- - L T -1 P"j, () TO (dIml'l'J5/�11/t'ss tuiih ., �;nu nllm)xr) 6!w111117r..I. 1,9 I I.q The volume rate of flow, Q, through a pipe containing a slowly moving liquid is given by the equation Q= 7rR't:.p -81-'( where R is the pipe radius, t:.p the pressure drop along the pipe, a fluid property called viscosity (FL -27), and ( the length of pipe. What are the dimensions of the constant 7r/8?Would you classify this equation as a general homogeneous equation? Explain. i.L The. c.� () s ttl 11'i:: -il1e e�L(,J./�1'I fl.,o..tD € b u.".:h l..! � ,'t- I! j �.s.J..e It) , IT/? I" IS Is "'- �e..,ert<1 VA It'd 'Ie .5. d i 1"\1 e r'l S, 01\ I� \ /,'s S- ) hom" 9£11 eo 145 ClVl,=, and �OI1 s lOS �el\ t /.10 T 1.10 According to information found in an old hydraulics book, the energy loss per unit weight of fluid flowing through (0.04 0.09)(D/d)'V2/2g a nozzle connected to a hose can be estimated by the fonnula where Ii is the energy loss per unit weight, D the hose diameter, d the nozzle tip diameter, V the fluid velocity in the hose, and h = to g the acceleration of gravity. Do you think this equation is valid in any system of units? Explain. � (O.Olf = 1-0 f).f)'!) (.!})If 2.�l. [f;]:: [O.O� J-o o. o� [ :J &J [�:J[ t] [L J [0. O/f .f-o 0.01] [L J Since = each -fa,." 111 -the ezu.a-t,;n rnusl: nt/lie fhe dt'me":$It9h.5 the C&If:iIrJHi -ferm (t), ()'f h o. ()q) rnusf bt ciirnfns/clI/(,ss. Thus1 1J,� e$aA..iltiH /.5 a. Jfnt'Y4/ h19mo1('net:Jvs eltut.!:u;" -Inaf /.5 I/ti//d /ff 4n!f sfj5km Sqrne. I. /1 / �f unl·i-�. Yes. I The pressure difference. Ap. across a 1.11 partial blockage in an artery (called a stenosis) is approximated by the equation Ap = K,. Ii + K. - /IV (Ao )'_.pV' AI - 1 where V is the blood velocity. /I the blood vis- cosity (FL - ' T) p the blood density (ML - ' ). D the area of the unob­ the artery diameter. structed artery, and I the area of the stenosis. Determine the dimensions of the constants K, and K,. Would this equation be valid in any sys­ tem of units? . Ao A S4me d/rnens/ol1s� Thus1 fhe etuaHM is (( f)ener1i/ hOJ?7()Jeneotis e� J).().J-itJ"7 -fhcd- woulc/ be valid In Cftl!;l tOl1sisi-fnt 5lfsl-em 0';' unih. yes. Sinc.e eac.h +errn must have. The k'v CtVld KIA are dirnif1sjonJe�s. /-/0 .k:Pl­ I, I) /. /1- I 1.12. Assume that the speed of sound, c, in a fluid depends on an elastic modulus, Eu, with dimensions FL -2 , and the fluid b density, p, in the fonn c (Eu)"(p) . If this is to be a dimen­ = sionally homogeneous equation, what are the values for 1.19.) a and b? Is your result consistent with the standard formula for the speed of sound? (See Eq. c= 51nte C::: 1.7-1 [� J � {;PI' (£vt(f/ :: Ey Fe' [f:4] [:b_:2.b) f:;- FC"f 2 (/) dllnfrmcmp//'f h(!)moqeneOIJ5..(!.!tl.dlc/1 ea.ch .f-�rm / 11 the e!ua.tlo/1 /nUS';' have ih� 511/?1� dlmel1,)J()�.5. Thtl5, -tne. YI1M hand s/4e ()+ E<g. (/) tnt/sf }?a� 1h� dJmel1sliJAs of- LT-I. Therei'tJre) (-i:" e //m111(J. te F) a-tb==o 2..b,,-1 (-Co Sa f, •.f.'1 C4Hd, f/(2� "n T) ;(. .ta. -t 'I b So C = -I :: (-b :!ill-I� Iy a. ::: rEI' 1.. 2. / Thb rt'su'+ (s Csns is ff>J1 /Aldh ::5peed (},f- So/,{ fld. 'Ies . ( /-1/ ClMI tB/'14;+';" h = - J. 2. "" L) 1,13 I A formula to estimate the volume rate 1.13 of flow, Q, flowing over a dam of length, B, is given by the equation Q = of the dam (called the head). This formula gives -Q in ft'ls when Band H are in feet. Is the con­ stant, 3.09, dimensionless? Would this equation be valid if units other than feet and seconds were used? 3.09BH'" where H is the depth of the water above the top Q= 3,O? B f..I% [L3r-J @,O'lJ[LJ[L] � [L3T-J::: [3.M] [LJS"12 3/, Z e�ual-if)n mUJf. htCjI� fhe saine dimen�ion.5 -the {of/S/tlnf 3. oq rnus! htlve dlmemiollS t)f L'/'1..r-1 Qnel is fhcY'�-k>re net dlmrnSIOI//e5s. Nt? Since epch .f.errn t"n +-he 5ince fh� �,,:,.f(ull hils dlm(I/SIOI1S ifs va/tie wi fh A chtl-ne;e in uni.fs. &: /-/2 wil/ chll"f€. \ \' I.;-;:::-/. /5 r----- --- --------------------, I 1.15 Make use of Table 1.3 to express the following quantities in SI units: (a) 10.2 in.lmin, (b) 4.81 slugs, (c) 3.02Ib, (d) 73. 1 ft/s', (e) 0.0234 lb·s/ft'. (c:t.) /0, 2 (h) ::; " 'f.31 s/u1s= (t.) 3.tJ2 /b: Ifi : (d) 73. / ce) tY,�231f (t.?/ s/�f5.) 01l5f')c/O s1u�)= (3.1)2. /6 ) ( If. f/;) /3. if AI 'Ilff Ib'5 -- If'- � - (0. /J231f / I. '2 J.j � ) ('I. Uti 10 f.e lb' $ N·o5 MI'2.. /-/3 70,2 /11. ..1 -;:;;;'i' Ih. s .ft>- ) \ ,!) ..... / ( /. 16 I , ---. ---------- -----------------, - _- 1.16 Make use of Table 1.4 to express the following quantities in BG units: (8) 14.2 km, (b) 8.14 N/m', (c) 1.61 kg/m" (d) 0. 0320 N·m/s, (e) 5.67 mm/hr. ( a.) (b) I'!. 2 8'/1{- kl1?1 N .1)'>1 3 - ::: (i'l:2)(I03an) (3.2.4'/ �)= '1./'6;< lOft- If (g. 'f � ) �. 3U /0.3 :;3) 5',/gxlo 3 H J ;( ..!Y. 11>'13 -2 = 3, /;. ;( 10 - (d) N·rm (!),t)320 -s -- - (t!). ())Zo 2. 3 b X N�tm ) (7. JD -:1. -f.f./J, s (e) s'b7 - 5,/7)C/o _L J-Ilf ,-" \...'.,. f.f 37iD.x /0 - I /f·/b N·rM --:s5 ) 3 Ib Slugs .{-tl /17' I 1.17 (a) (b) 1 5 gallons (U.S.), (e) 240 miles, (d) 79.1 hp, (e) 60.3 of. (a.) Express the following quantities in SI units: 160 acre, /�O (b) = ()"40 rni)(s"28Ll!�)(-3.b'18)(lb-I;:)= hp::(7,!.lhp)(SS'D4�1j, ) (I.3S"lP� ) = C�) .'-.Jfo rni (d..) ''t.} "'n c e) Tc. d 1.,J ;: 5 §.. cr :: = \ W hP :So /9.\ hp (bfJJ'f:. -32) 1 5'.7°( -1-273 1-/5 -I)., ..-\: =- = = 5, qD �,ij '/. ID W 15,7·C �8'l1<' � 3.2�)(IOS-rm 5".qbJ<ID�.J 5 /./8 I 1.1S For Table 1.3 verify the conversion re­ lationships for: (a) area, (b) density, (c) velocity, and (d) specific weight. Use the basic conversion . relationships: 1 ft = 0.3048 m; 1 lb = 4.4482 N; I and 1 slug 14.594 kg. = (a) / ft 1..: (/ .fe-i(L 30n;) 7..] (), Thus) muffiil:; fo fb) 1':7 2.. -/--e- It2. /:0 O. 0929tJ 9. 290 E - 2 by / rnullipJ'j slugs/Ie -Ie? //m � .ff 5" -1-0 "m-<- �tMtJty-t 1:0 I /!n./s. II; If:!> - _ (I l' -= Tn u S; s: /5"'1 E -r 2. .fo b!J conm-I = Thus) mull,ll!) -Ills (d) = / Thus) (t:. ) 2 nn -rn u / 3.0H E -/ h b'J INt2 IV) tf. r ). jJ:. .ft3 l�' IS 7. fipl:; -/:0 ;V/--m 3, / Ib IV n ,n� I blIi � /-/6 o cont/�rt / II: 3 l [{O,3{;lff)3M13 J b!:J /. 57/ £Of 2 -fo t'c>nJlfyt o o - -- . For Table 1.4 verify the conversion re1.1 q lationships for: (a) acceleration, (b) density, (e) pressure, and (d) volume flowrate. Use the basic conversion relationships: 1 m = 3. 2808 ft; 0. 22481 lb; and 1 kg = 0.068521 slug. 1 N = (a) Thf.;ls; me.c/h'pllj trn/s' b:f ( b) _ 1 I . °40 ;< /Yv> 'l. -=- N f»1 4 :I- 10 -2 ThU5) mu/Lpilj N/rrnl 1::-0 ft3/s. �e'niel yi I.q/fo E-3 h,!1 Ib .ft'- / h / It 2-. Thus.) rnultip/':J -t-o .f-t3 481�)r '(O.22 ) /..,Ogr 5" 10-3 S//.{5S Thl.4s) mul+ipllj --'<.j/rm3 -to s/lA�h 3. IJi =(1 1-1: 1:0 3.;28/ -!-t /.s '-. -to (C) 3.2;/ IV b� l l U' :tfO,g) 4 -FeJ 11M/. ;;',081 E'-1 35".3/ (}113/s /- '7 o h� -to �l1l1erl.. 3. !)3! fo ��nVfYI: ftJ _ s £+1 to (ePl//Hyt /.2.01 1260 gal/min. What is Water flows from a large drainage pipe at a rate of this volume rate of flow in (a) m3/s. (b) liters/min. and (e) ft3/s? 1.10 ("'- ) .f./owr().i� = (/200 757 (J:,) 51ilCe / /il:er = J/owra../e= (757 (n f/() II,) r Q. l (. = - gal tnin ;<.. 10 -2 / /) -3IJ?1 � 1J?1.3 .s ;'/0-2 �3)(/031;kf'.5)((Po.s) 5 h>1 :3 (7 57 X } D- iF ) (3. S3 ( X ) D J 1 2. �7 -f't J s 1-18 c hn/" ) o o 1.2 I An important dimensionless parameter in certain types of fluid flow problems is the Froude number defined as VIVge, where V is a velocity, g the acceleration of gravity, and e a length. De­ termine the value of the Froude number for V 10 ftls, g 32.2 ftls', and e = 2 ft. Recalculate = In In 86 1N1iis / v /0 ::- .li:- the Froude number using SI units for V, g, and e. Explain the significance of the results of these calculations. = /.25" s 3I unil-5 : V (r" It) (iJ. 3tJ'ff S = Cj"" .£ v 3. ()� � (�+1:)(O.304-g m1)= cr,:8/ = 2!!)= ft Yi� IT - 3 , os = The va/tie (>1 a. il1 de'pend�,d t!)f O.bIOm, IY>1 S d /rnMsion/ess -the. uni t /-1 'I c ') T /.25 partlrne -t ey­ :Jfjs-fem. IS 1.2-3 �.23 A ta nk contains 500 kg of a liquid whose specific gravity is . . DetennlOe the volume of the liquid in the tank. �V Thus, m::: V:= = := SG r/hO V m/(SG PI/1.0 ) 0.2';0 m3 = SOO K9j((2)( qqq � )) J.2Jf , I I.Z'f- Clouds can weigh thousands of pounds due to their liquid water content. Often this content is measured in grams � per cubic meter (glm3). Assume that a cumulus cloud occupies a volume of one cubic kilometer. and its liquid water content is 0.2 glm3• (a) What is the volume of this cloud in cubic - miles? (b) How much does the water in the cloud weigh in pounds? J + �� . i �.'.'t . r ,.-Yot,LL�L �� 3]1; u�l i8'1 �) (;01,1411 (:-5'.'ft) (s. ' . � . . 1:- p. , � . I Z3b 2 IIJJ 1· 3 + /-20 + .J ��ti , , I = , ��++t e - 1 + + r- +--1----,--1-� I + I + + o o " \ \ ' I ---------------- -- -------------------, --r-�� I.;Z .5 1.25 A tank of oil has a mass of ZS- slugs, (a) Determine its weight in pounds and in new­ tons at the earth's surface, (b) What would be its ,'mass (in slugs) and its weight (in pounds) if 10cated on the moon's surface where the gravita­ tional attraction is approximately one-sixth that at the earth's surface? ( It) w.e i:Jh f t»f as.s x. � .. (b) ;: - (25 5/uqS) (32,.2 �)= _80S Ib - (ZSS/U9S)(It;,Sf � ) (l.g/ ;,.)== t???4S,$ w.eijlJi v ,, : \ d = .25' (tyr.ASS clots j'J/)t JY'�vikfiIJHQ / :;/'.((lS (32.:� ) (25"' S/U'j5 ) a :::: /3Lf 3S"8o.lI/ depfnd �II H-rad-it)f1 11, ) �/�.���6-'-1----�--� 1.2,6 A certain object weighs 300 N at the earth's surface. Detennine the mass of the object (in kilograms) and its weight (in newtons) when located on a planet with an acceleration of gravity equal to 4.0 ft/s2. l?'yta,55 - fo fi·/s2 ) - (30,r;, Jj. ) (If, r;;) (0. 301ft ;; ) N /- 2.1 0 1,2.7 I 1.27 is 775 The density of a certain type of jet fuel kg/m'. Determine its specific gravity and specific weight. 0,775" - (775 !::1.) (q; �/ �) /?n 3 S � = 7. fa() Y3 /111 1,1-1 I Video V2.8.) 1.28 A hydrometer is used to measure the specific gravity of liq­ uids. (See For a certain liquid a hydrometer read­ ing indicates a specific gravity of 1.15. What is the liquid's den­ sity and specific weight? Express your answer in SI units. 5G - , - tt­ t- I r /-2.3 1,1). j, Z 9 J 1.'2..q 40 of. An open, rigid-walled, cylindrical tank contains temperature varies from 40 of water at of 90 of. 4 ft3 Over a 24-hour period of time the water to Make use of the data in Appendix B to determine how much the volume of water will change. For a tank diameter of 2 ft, would the corresponding change in water depth be very noticeable? Explain. InllsS tJheve of. WtJ.-/;ey -If Is jne !i7 It $;' m«$i- fitJt;1 Ta6)e The and;; 171e derlsrf<:J. Jln�e., 1h� �rlsfal1i t?5 -the -temjlRra.-tuYe ehtll1qe..5 - -tf- J(;J 0) lIo/l1me YetrJllln -r- x /J 'jc"I,/(), S, / f�" (ftJ° J} III"O�'Io'F £J /1120 rtp rpOF =- -- /. rtf" /. f / 1po = e-hQl1fe )n ji= i. OJ,?L - ';/'(f.j .f.r3 f. 000 /:S = uN.kY elelI/ltl 41) .1-11- are. I:t Th,:s 5/nA// e-h1(11ge 110frce�ble, iVt', In H3 J.t;3j �3 /10 / wm� in I/iCyet1� :=. def1h �. 01 If 71 5/1( £5 � .5iH� 3 , �tJj) (If.f1t.3 ) (/j, 9'11) -if" Tltef'e'(;'Yf'; /Y1J1I1 Thus/ 1h� -¥Xf =- ) 0, OJ id If. D If/' .fiJ fi, # 1t1�J n .ft3 rift) 2- WtJ/JIJ 3 P =5.r2x/v+-t,=O,0710in. n�j. he -3 VfYfj !J S/;1hf/fj d'�(lIi vO/lle h" ,6} /.JI;" b... cbiajl1(',( If sjncif,i. i.Jc'1hf cfwIII,,, Ir IU'" rIt1li{'Y' 1M" 4frlsii-!J' TIII� I'.; dUll 10 1M. /Q(.c 1hof iltele i.s s&>/}/( IIHCfmJit-/;J 111- -the li>1(r/h SI;"J7c4111 11911Y'1! of t;,t'� -h<.J� iJ4/t.(t'S" 0111'/ -Ih.f' �(>/I<'f-;o" :. s{'t1S,f'';f! -ft> '1},,} u nC.(,..hin�. , \ 1.31 I 1.31 A mountain climber's oxygen tank contains 1 lb of oxygen when he begins his trip at sea level where the acceleration of grav­ ity is 32.174 ftls'. What is the weight of the oxygen in the tank when he reaches to top of Mt. Everest where the acceleration of gravity is 32.082 ftls'? Assume that no oxygen has been removed from the tank; it will be used on the descent portion of the climb. vv rn� == Lei ( 1hvsJ Ws, �IE )sl denote se� level cmd ( JIb � ff1/HI£ However m ,,; sl or ;: :: = denofefhe fop ofMf. Everesl and msl:: )rIllllf �I psi �/E �sl �/tJf£ m�1 )MIE so Jib -Ih4f S/flce In 32..0 82 ft/s1.. 32..17Ifff/sl. :: :::; � j 0 qq711b ='=== I , �q r7�'/,4.2 I -- 1.32. ---------------------------- � ---------- The infonnation on a can of pop indicates that the can . contains 355 mL. The mass of a full can of pop is 0.369 kg while an empty can weighs 0.153 N. Detennine the specific weight, density, and specific gravity of the pop and compare your results with the corresponding values for water at 20°C. Express your results in SI units. t./�/Jhf of. f/tf,d {/t!/"'m� �I /Iu/c/ �k/ we/fltf maSS = we/11J1 "I C/Jt7 &. vj}lt(tn� ",/ rltl'il:' Th iI� i'r()111 E{ (I) =- r' • F&Y' (;'= 3. "2 x f} /53111 / s5 x /tJ -3 L U' t/ - wafer d 20'C (f. Uz. 0 :: = r7 gr 3.3 /h1 �. / -3L ) (/() /n13) / 5'3 N (see ) ' -r;.,J/e tt770 B. z /� /.J :: 1ft. 2 (11-1..1) . :::. :1'55' x/() -� 1m 3 • N .1)1.3 Itp!fSdl'x J]) . � ,,",3 ) 56 = CJ. 1''fn. IJ etPml)tm�11 ,,/ �e5(, Jla/lln .for /()1I.&fV b,Ji1h 1h()S� fz.r 171e. po; s/7()W..5 171",1 -!J,t:. �c;ltc tJ! Ijht� dtl1sa-y; I1l1d �eCi;:'c' ji'rtlv,f:t 0;:. 7'7te ;op czre all s/'j}JfI� /Pl()eY '/},Ifn 1ne Cc>rre$f"l1d;� 1/(}/tlfS -hr wa1er. 1-'16 ,"1.33 I '1.33 The variation in the density of water, p, with tem­ perature, T. in the range 20°C,;; T,;; 50°C. is given in the following table. I 998.2 I 997.1 I Temperature (0C) I 20 I 25 I Density (kg/m') I I 995.7 30 I 992.2 I 990.2 I I 40 I 45 I 994.1 35 988.1 50 Use these data to determine an empirical equation of the fonn p Ct + c,T + c,T' which can be used to predict the density over the range indicated. Compare the predicted values with the data given. What is the density of water at 42.1 °C? = tiS Jn� 115 d",l« a �V",o' f .£e- �6?"ufq,.d' In = EXCeL. /p�/ II? - T.OC 20 25 30 P. 35 40 45 50 /eJo/ _ O. 0S".3:l r If2.! "c 0.0533 - p,JynDItl;1¥ I 'pl"Djn?m $vch o. 01) �I r2. -b;J� below / f (Pt'f'dlcfr.tI) t1?'�e/)/- fmlf kglm"3 998.2 997.1 995.7 994.1 992.2 990.2 988.1 PYlI{'r F, :;ftrl� Thu.s,., :S�t:t?;tp C�rvl'- tht!.. IS I;' T= tJ ",/fJ., I (J) ('J/�II). p. Predicted 998.3 997.1 995.7 994.1 992.3 990.3 988.1 (if2./-C)- /-2. 7 ().()ol{1 frl.! .c)Z-_q_q'_I._S �� 1,3,+ I ' l.3'f- If 1 cup of cream having a density of 1005 kg/m is turned into 3 cups of whipped cream, determine the specific gravity and specific weight of the whipped cream. 11 A�s ,,/ who'( Since crellm) m1 -V "'- = Volume. �1 ) (/ 00 f,- J< (-V�p ) ::: = = 'Ow �ipp.,� tt"t:d M :: - fwkip.,. ... Cy",_ ", =3 :ZQO )( # N rm'3 /-18 ;;- ( 3i5S D, 335" !!o) (erg ;.) I /.36 I 1.36 Detennine the mass of air in a 2 m' tank if the air is at room temperature, 20 ·C, and the absolute pressure within the tank is 200 kPa (abs). e = f/RT Th '.IS, � :;: z:: I03-ffi)/[ (2,g69x/l �;1)(2q3 K)j � (200X 2.38 HenceJ wifh T::J.oQc ::(20f273)K::H3K anJ. fJ:: 2ookPa:;: 200X/03 .g.,. m::pV�2.38�(2mJ)& 'l:76/<'1 I 1.37 1.31 Nitrogen is compressed to a density of 4 kg/m' under an absolute pressure of 400 kPa. Determine the temperature in degrees Celsius. -P = T=- 337 I<. jJR. 337 K - ;}.73 I 1.38 - 1.3& The temperature and pressure at the surface of Mars during a Martian spring day were detennined to be 50 ·C and 900 Pa, respectively. (a) Determine the density of the Martian atmosphere for these conditions if the gas constant for the Martian atmosphere is assumed to be equivalent to that of carbon dioxide. (b) Compare the answer from part (a) with the density of the ean,h's atmosphere dUling a spring day when the temperature is 1 8 ·C and the pressure 1 0 1 .6 kPa (abs). (0-) Cb) -t fMI1YS - F.e.. r'flJ -= 'Th",s) RT -P RT fll'llllr$ ,.-r... .. fe q00 ::- (I n.� = if;. ... -k-?<) [ (I D I. iJ> (2.AI..'1 .J' 4;>3-'1< = 0.0214/.2 Z 5'bo C + >< 1 0 n;:;-� ) [( !� � /Il"2 1-30 2.13)3 3 N 18'C - i'Z13)k] O. D 1'15 - 0.D2.14 Je,"""3 I'm :: - I. 2. '2 1. t'J 5 -h /l!'13 010 ,",,, ,v A closed tank having a volume of 2 ft3 is filled with 0.30 lb of a gas. A pressure gage attached to the tank reads 12 psi when the gas temperalUre is 80 OF. There is some Question as to whether the gas in the tank is oxygen or helium. Which do you think it is? Explain how you arrived at your answer. 1.3 q ' . id�/j� t 1= #x. volwme 1. t, � ( Since. ;:\ -trno.sther,c jOYe.JStlre ,;{h� ty::: Ttt /,Ic I. 7 ;€ = /. R 2 t;.Z )( :: £� .f!) he /uim ./J A­ of / 5"SIf)( If) /), /0 If Ii, Dj<. /J ( Sf/.(9 ' I.f. 7,/2 6/ 1 It 3 (121'" h( ti � IJ, (.J2z-Pj ) 6 fe) .. oS/wl/S .. H3 /'1':7) tS/� .ft, /fell II/-: 7 j ,..r/a 1:hll b ) (I) /OY ./-0;- ! 5"5if .(/� 3 7. /2- /0-3 tJ. go -!he (- - /.ZIf2.XIO - -h, (J'IJor + If.�iJ) OR (2/,,7 T:::. wftn as.,Sumed )( = '+ - 5. 73 .x I b - 'f ,/ S. -U..!4. ft-3 1l1e$e (/Il/t(es WI fl, -the aC/:t(a/ the -btll11. /;' dl C.1lh!,S '1h4 t 11t e.. /-31 detl5/-i:t t. '+0 I 1.40 A compressed air tank contains 5 kg of air at a temperature of 80 0c. A gage on the tank reads 300 kPa. Determine the volume of the tank. V(!)/tlme - /ff14�S 1= J.;U 1. '-1-/ 1 , , I.!H A rigid tank contains air at a pressure of 90 psia and a tem...
View Full Document

  • Winter '16
  • st
  • Velocity, ........., Fig

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern

Stuck? We have tutors online 24/7 who can help you get unstuck.
A+ icon
Ask Expert Tutors You can ask You can ask You can ask (will expire )
Answers in as fast as 15 minutes