PracticeMidtermSolns

# PracticeMidtermSolns - Math 21C—2 Practice Midterm...

This preview shows pages 1–12. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Math 21C—2 Practice Midterm So’Ul‘ionj Name: I Signature: % / Student ID: 123%‘61Mm — U12 c There are ten (plus cover and bonus) pages to the exam. 0 The exam totals 100 points, plus 10 bonus points. 0 You will have 90 minutes to complete the exam. 0 No calculators, notes, or books allowed. 0 Good luck! 1 1. (10 points) Deﬁnitions and Examples: a. (2 points) Write the deﬁnition for a sequence to be bounded above. (An example is not sufﬁcient for full credit.) ASquvmce {an/S is modal above gF them add; an M Such F— WJ, q” 6 M For all n, b. (2 points) Write the deﬁnition of an alternating series. (An example is not sufficient for full credit.) A {cries i) an QHCFM‘HA’ {aria gm “Hernunltly Fosi‘Hx/e and neaq+lve. if HI. 'erm; c. (2 points) Write the deﬁnition for a sequence to diverge to inﬁnity. (An example is not sufﬁcient for full credit.) {m3 (livery; ‘lo lniplnflll («C “For Ever) M, ﬂm i; an N IoLl‘ ﬁnd" I) > N :5 4n 7 M . d. (2 points) Write the deﬁnition of the cross product of two vectors. (An example is not sufﬁcient for full credit.) no; "Asa; 3“ CE \7‘ a} d X \7 = go 9 > 7;, where 7: l5 “1 Unl'l’ Wtj'or perpendicular JrJ (71 flqhe mufﬁn-Ina (1’ m4 7/ and fallhfyfv He. Rial“ ‘th Alp e. (2 points) Let f = f Write the deﬁnition of the Maclaurz'n series for f. (An example is not sufﬁcient for full credit.) 49 Th chlaurin series 19v 35 Z 4“”)(0) h 41 n', h=0 2. (10 points) Short Answers a. (5 points) State the Integral Test for inﬁnite series. LU" {Gin/g be “ \$833.1th 0‘; FoSle/Q +Qrmf' Sumac” ‘F If A (oni’inuwj) Poffﬂve, deﬁant? wrung/73" 0T/ 16 v{or q” M Z ( N m f°\$f+iw Shh; 2f) Cindi 3 4,, For AH n7IV. / x) n0" Z 4" «ml f Quidvé Comm/ﬂ 0r diver/6 +70%?”- n:y\) \ b. (5 points) State the nth- Term test for inﬁnite series. I4: “"1 an Joe; noWL QXiSi‘ or‘ 1) 00+ (Bf/It, 7% Zero} N900 \ \, TLQH 4n Awergef‘ n3! 3. (10 points) Determine whether the following sequences converge or diverge. If a sequence converges, ﬁnd its limit. a. (3 points) an = 1n(n + 1) —- 1n(n). FM A0“) livin) : hm ﬂw(n:\') hm an - “404 “.50.; n-‘N" \ 9:; ‘ (it; “5 = NH b (3 pomts) bn=n2'l“(”) -ln" -1,‘ --An ﬂ“(h 2 ) awn 4- A 2 4 lm b“ ’ hm n2 -— (m a :: (m a new n90” h‘yb‘ have (my I “*3 a .‘ TC? is; (e e Am I-Ml) " ‘w W “ "A" n a W {true 4 1. MW § | c. (4 points) (1n = ( m)“. Th, (MW doe} MT” QXB'IL. | MN" [in : Q59 n-V" n! +11. ‘?m»+ hm qufnmlC) bdwwn by)? P0\$i+;w(7 (47,4, n—va (.3) n 4 (and miﬂ‘ﬂw/y lap/’4. 4. (10 points) Determine whether the following series converge condi- tionally, converge absolutely, or diverge. (—1)" (In In)“. a. (5 points) 2 71:2 «4 W H)" - f7 CW" m M)". We m koo+ T€)+ *0 “\L‘ 00 0‘ l 53 LthQ’VS- AJ 51 h Abram Comer/ante 76*, {a (_1)n+1 no.999999 ' b. (5 points) 2 =1 3 [a L 0"” 4” I ~ ‘— ~ > conglder Z 0.41%") r C, 0.611111 ""' h k1! n . \ ,,_ “rho Se.er gin/erg?) (:1 ML P‘)€ﬂ€j ’957L. H°WQVQF 9° '1” I ——7 _, ‘ : 1%1 3) an AHQ/n'tﬂnl fen‘ej/ mm “q n=| h an > 0 ‘Car 4” I’\ an '2 an. 4M” n “A (in “'9 O a; n—JWO. 5 go \71 TL AH’QIYM‘HAJ {ma T€5+l .90 (")MI 2”“...~ o.‘i‘M‘M‘\ (om/€781 (conclH‘ioM/A/J H) " W (MW/111 (mWw‘e’y) . W 0.4%“? h 5. (10 points) Determine the values of a: for which the following series converges conditionally, converges absolutely, or diverges. What are the cen- ter, radius, and interval of convergence? ()0 Znnx" n=2 00 n h We consider In a! ) ﬁnal afrly Quo‘l’ Tef/ﬁ n33 " Inn/{W 2 M74 QM Unleff 45:0‘ 5:) Cenlef Oi ("WV “Q. U Tl-t Nah!) o\c (onVQK nL'e {J AAA {IL lalQrvnl a": (unwrian I) 4520 \ \ ‘ M wing ',»’< I“ Ns‘lfw. “ml ‘6’ ll,“ malt“ if Gill/14f ’0 (M70) NW" 0/ duo ml exb‘l“ (46(0), 5o H» Eerie) sliver“; 4390450 \$1 {L 0% Term Tgf. TL jade E; (anoll+l°h4l/ (M W ML nowhere, I 7 fl 6. (10 points) Compute (no shortcuts”) the Taylor series centered at 1 for the function new; My) = W “‘3 2 Whhirﬁ Hmi Mac) a 7944"} 7cm) ‘ ’13.? PM - i;- 4/; PM = 37' PW) 2 4% [Lia N‘U) = '3' v. m) (20'3)0~h‘5)w3‘] if“ f‘ ’0) :95) ’77... (“Um (2n'3)(2n-;) ---5.3 -‘ I I‘LTHVU + Z: a?“ ’ Owl),3 7. (10 points) Using what you know about familiar Taylor series, write a power series for f = 642. Use the ﬁrst 3 non-zero terms to estimate 1 _2 fezdx. o (Hint: you should be familiar with the series for em.) ¢ 2’91“. Quill: e ’ W M w n 2 1 W (will ‘7 (“ll ‘4 a ’54 __ ~: ———-""'" S e ‘ T m M ‘f 2 K _ _,, — l“¢ +2| 8. (10 points) Let P be the point (g, g, —1), and Q be the point \/§ \/§ (“T’"_4"_1) a. (3 points) Find the component form for ——\ .5 E—E~—E_—~—l Q‘<‘q“«1, ‘1 H,’()§ —) b. (3 points) Find the magnitude IPQI. \m = ‘4‘ gr +o* U 32 «2 q‘Lq *0 :1 c. (4 points) Find the unit vector in the direction of PE 3) a vhf} VCCfOP, 90 Pa U 71 UN} Vec,+0/ [A ﬁt dtredLl‘Jn 0‘; 9. (10 points) Let a = 277+ 37-— 13, and v = 32*— 2j+ 2013. a. (3 points) Find 11‘ - 17. (a: +33%)‘(31‘ '35 WW = W3) +(3>(’3W"W°’ a 6 ‘(3 '20 2. ~20 b. (3 points) Find 11’ x 17. Q g t 5‘ 1: :1,(3(m)_(4)(_;)>—~§‘(2(10)‘(—M3)> +L(2l—2)-3(3)) Exv z 3 ‘ ‘2 ’ _, 0 -q-q 3 -2 20 =?(4"’3‘3 WM +3) HM ) = Sa’z 4+3; 4373 c. (4 points) Flnd {II-(11x17) a: a (a “7) : (2‘: +3; ~?)-(§76’Z‘ All; "32) .. QM?) + 3(43) 1* (4)08) “'0. A H21 anch’) Mk K PKOAUCQJ R V€L+OK WL‘RA i) 0r+A070h4l i) 10 w! V‘, -‘ 50 EC ' O} bi ﬂk Flare/He) MC bo+ PAM/v61: 01m) Deiint‘ﬂoh o4: Ole‘D/Dhﬁlrly. 10. (10 points) Find parametric equations for the line which passes through (2, 4, 5) and is perpendicular to the plane 3x + 73; —— 52 = 21. U917 m Etwhw‘ f” 0\ Wm, M determine Hmf‘ K 1 <3, 7) 59> I) a nor/Ml vet-7L” 4° “WWW. T14", we . U59, )ﬂL Pa/qun‘c [P4th {V 4 ﬁne JIM,qu Po (yo, #10, 2») wk pawl/cl +0 <Vx) V4, V3 «awn-WV. , ‘3220+sz , Z=zo+fv3~ 50 ﬂ» [twﬂmf 14” ’t hm. “mics/[k (RH/IL End -* 9046 (W. 11 Bonus. (10 points) Let pn denote the nth prime: p1 = 2, p2 = 3, p3 = 5, p4 = 7, p5 = 11, etc. Determine whether the following series con- verges or diverges: 00 ' De I so Z «a w 7:0 2 .. n" P“ W, A2 12 ...
View Full Document

## This note was uploaded on 02/17/2009 for the course MATH NA taught by Professor Na during the Spring '09 term at UC Davis.

### Page1 / 12

PracticeMidtermSolns - Math 21C—2 Practice Midterm...

This preview shows document pages 1 - 12. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online