MAC2313_Test2_Spring2008_Solutions

# MAC2313_Test2_Spring2008_Solutions - Page 1 of 4 MAC 2313...

This preview shows pages 1–4. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Page 1 of 4 MAC 2313 Name Test 2 (Happy Valentines Day) Date: February 14, 2008 Clearly show all work for full credit. 1. (8 points) Find r(t) if r’(t) = cos(t)i—sin(t)j+3t2k and r(0) = j+k . .—.. r65): SF’GE) do: <~Sih(ﬁ)‘¢o§(tl)ﬁ3> f C, do): < o} 50> + 53 = <Oilif‘7 2. (8 points) Find the length of the curve given by r(t) = 23in(t)i — 2 cos(t) j + Stk , where 0 S t S 3 . rim :Qw w), 98‘51’23 i g > =3 ir’ltll r JHQQM Moira +— 95“ :- J31? 3 L L: 3 Jamie : 3J5? O 3. (5 points each) Determine each of the following limits: (a)(xy1)i_rf(163)XyCOS(x—2y) 9(3).CQS (o) .: IS) . W4 (b) (x.y1)1—13(10.0) x2 + y8 0 : O we 4:, 1/ ﬂaw? (X a" «(.30 5" Y .. i a" “if “1‘! ‘ “8’ W6 Z” isms 51 7.90 ‘ DNE‘ Page 2 of4 2 4. (5 points each) Suppose r(t) =<t ,%t3,t >. (a) Find the unit tangent vector T at the point (1,%,l). N f = i r:(t):4;¢, at?) l) :2» r’m: 451» 3, ‘7 (l { lr‘mi: JHWH =3 ’1 . Tm: " l = +3 <3,9u>=<%)%,é> J (b) Given that the unit normal vector at the point (l,%,l) is N =< —§,%,—% > ’ determine the binormal vector B. . . ‘ ' V L (1 k k 3 B 2 Tx N 9/3 33 3/3 8’3 “Y 7 "3’ “9’3 3'3 .. -a I ‘2 3 3 3 " ﬁﬁ< Egg, 3) 5. (8 points) Find all ﬁrst partial derivatives of the function f (x, y, z) = x2e”. Z)? ‘- 3181/2 H z. ’D'X “a? 2 “IE ’~ : e. 2.x! ’X Z 79?, 2 7? ai‘xr‘ie‘ 6. (8 points) A function u = u(xy) is a solution of Laplace’s equation if um + uyy = 0. Determine whether u = ln(x2 + y2 ) is a solution of Laplace’s equation. _ ‘ I _ 22% M" q 98+? (“A 73+»21 2 D. a .: QM“ : 91,:355 xx Hf”) (xq’rwl) 9% “v i: 78*? . Q a - (ﬁx/lira» MM : 22%sz W - (KW/“3; Eras/l) um + am 1 (DvaﬂvﬂxL (9761-9?) .: O a 2 O CKRHPY CE”? .6. (A: Qt ( (78+ 4133 {5 cc \$42,841er of éﬁuqﬁba. Page 3 of 4 7. (8 points) Given sin(xyz) =x+2 y+3z, use implicit differentiation to ﬁnd 1 , , y TALL 232i "Heal-125, 7: CLS Cc {Maths/1 c‘ﬂ‘y‘ 61w( 'x a; a; ézavzsi‘ént ' 29} v 3 ~ 0 r 22 ‘1’ 3 2‘2 605(X41a)‘(0(y as + X2 _ by m, 2331:; as (my = 22—- xz cosCWl rag Qw- Kz cosbvvﬂ 3‘1 ‘ xvmbcva '“ 3 8. (8 points) The dimensions of a rectangular cardboard box are measured to be 12 inches by 12 inches by 10 inches. The cardboard is 0.25 inches wide. Use differentials to estimate the amount of cardboard (in cubic inches) needed to make the box. V: Gm, 2 iii/7:7) (jg: it 1‘5“ , Y1; ~fllv: 4,12 Jr 1- XZDIY '1' 9‘7 0‘? zzro AZ 26’ 51v: Gallows) + Qataamw + gagging) = (go + (90 + 752 a: ma 9. (8 points) Use the attached table to ﬁnd a linear approximation of the wind chill index when the actual temperature is -l4°C and the wind speed is 42 km/h. Lam : was i Q[43El(x-4\ % I; (QWVD use («,Lvtmo f. PMD '3 "'37 . «3H3? : Ave,an -L _ I- {'(‘Lﬂkﬂo‘l'POEM) 595- ‘ 5» L2 “a gt (a; ‘ get: A: “3:231 : L {;(alg):l‘3 Ml u 5 H -r- Paﬁin-WPc-rmv) A * : -oz2' mm \t 4)L\ "‘~ h LL55 we Ark” «alarm I; ~04 mm: ’0'“; 1T5" £(~ILI)‘~Q\§: LGHﬁQB: ~97 + new is) + (~o.t-§)(‘~l3"’-Ib) 1.». ——:2(, Page 4 of 4 10. (8 points) If u = x3y +yzz3 , where x : rse’, y = rsze", and z = rzssin(t), ﬁnd the valueofa—uwhenr=2,s=l,andt=0. O as 1X: z 34 v: 22 z: 0 29: i 95’ i: 9“ 9‘5 if"? 53 '92 25 7g ‘ v =(3«3~)~(re¢)+ an mf>~Camé¢> + <3v235‘CF we} ’3& : (an (:23 1+ (9)00 + (0') Lo) : 30 11. (8 points) Find the directional derivative of f (x, y, z) = x2 + y2 + 22 at the point P(0,4,3) 1n the dlrectlon from P to the origin. 0 : (OI 0/ 0.) (<5 i .3 v‘>'~ ‘ ~_ __~ “3“ . Ni “.3 T: ‘ uh ~\) M ‘ t: 5.) K gﬁhq‘z) “I < 91, 3'1) '9?7 ":5 \$€(OJH,3) ': <0) 8)é:§ ._ A . a 5» . ~> ' ' Du (019,133 r (05%33 ° LA 7:: (2 ~ %(S\-- \$10 = —]0 12. (8 points) Find the maximum rate of change of f (x, y) = xe” + ye” at the point (0,0) and the direction in which it occurs. _.) ~ ~. 74 VHWA: < 83*- ve“) “Key/1L e x > “:5 \$470M: < I) s > ‘3 Aakl‘ﬂuﬂ“ (“ml-e of ﬁ/jUi/lie, (LS i VP(O)O)\$ 2 [a (la Amie“ 0f {fﬂom v: <m7 (La 2%) ...
View Full Document

## This homework help was uploaded on 04/21/2008 for the course MAC 2313 taught by Professor Paris during the Spring '08 term at FSU.

### Page1 / 4

MAC2313_Test2_Spring2008_Solutions - Page 1 of 4 MAC 2313...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online