VISUALIZATION IN R1.Find principal components of your data (use: Matlab: pca, R: princomp, or other).2.Make visualizations in two projection.3.Make the attribute axis representation.4.Select the most informative/informative attributes possible according to the shortest / longestaxes5.Create different subsets of attributes (informative only, non-informative only, no non-informative attributies, etc.) and visualize the data using the nonlinear projection method -MDS6.Present different visualizations, comment on the result.Visualizationspc <- prcomp(data7, center =TRUE, scale =TRUE)paaisk <- round((pc$sdev^2/ sum(pc$sdev^2)*100),2)ggplot(as.data.frame(pc$x),aes(x=PC1, y=PC2)) +labs(title ="Scatterplot according to the first two Pricipal components",x = paste0("PC1 (",paaisk[1],"%)"), y = paste0("PC2 (",paaisk[2],"%)"))+geom_point() + theme_classic()