This preview shows pages 1–5. Sign up to view the full content.
This preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentThis preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: Chapter 5 Discrete Probability Distributions Learning Objectives 1. Understand the concepts of a random variable and a probability distribution. 2. Be able to distinguish between discrete and continuous random variables. 3. Be able to compute and interpret the expected value, variance, and standard deviation for a discrete random variable, and understand how an Excel worksheet can be used to ease the burden of calculations. 4. Be able to compute probabilities using a binomial probability distribution and be able to compute these probabilities using Excels BINOMDIST function. 5. Be able to compute probabilities using a Poisson probability distribution and be able to compute these probabilities using Excels POISSON function. 6. Know when and how to use the hypergeometric probability distribution and be able to compute probabilities using Excels HYPGEOMDIST function. Solutions: 5  1 Chapter 5 1. a. Head, Head (H,H) Head, Tail (H,T) Tail, Head (T,H) Tail, Tail (T,T) b. x = number of heads on two coin tosses c. Outcome Values of x (H,H) 2 (H,T) 1 (T,H) 1 (T,T) d. Discrete. It may assume 3 values: 0, 1, and 2. 2. a. Let x = time (in minutes) to assemble the product. b. It may assume any positive value: x > 0. c. Continuous 3. Let Y = position is offered N = position is not offered a. S = {(Y,Y,Y), (Y,Y,N), (Y,N,Y), (Y,N,N), (N,Y,Y), (N,Y,N), (N,N,Y), (N,N,N)} b. Let N = number of offers made; N is a discrete random variable. c. Experimental Outcome (Y,Y,Y) (Y,Y,N) (Y,N,Y) (Y,N,N) (N,Y,Y) (N,Y,N) (N,N,Y) (N,N,N) Value of N 3 2 2 1 2 1 1 4. x = 0, 1, 2, . . ., 12. 5. a. S = {(1,1), (1,2), (1,3), (2,1), (2,2), (2,3)} b. Experimental Outcome (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) Number of Steps Required 2 3 4 3 4 5 6. a. values: 0,1,2,...,20 discrete b. values: 0,1,2,... discrete c. values: 0,1,2,...,50 discrete d. values: 0 x 8 continuous e. values: x > continuous 5  2 Discrete Probability Distributions 7. a. f ( x ) 0 for all values of x . f ( x ) = 1 Therefore, it is a proper probability distribution. b. Probability x = 30 is f (30) = .25 c. Probability x 25 is f (20) + f (25) = .20 + .15 = .35 d. Probability x > 30 is f (35) = .40 8. a. x f ( x ) 1 3/20 = .15 2 5/20 = .25 3 8/20 = .40 4 4/20 = .20 Total 1.00 b. .1 .2 .3 .4 f ( x ) x 1 2 3 4 c. f ( x ) 0 for x = 1,2,3,4. f ( x ) = 1 9. a. Age Number of Children f ( x ) 6 37,369 0.018 7 87,436 0.043 8 160,840 0.080 9 239,719 0.119 10 286,719 0.142 5  3 Chapter 5 11 306,533 0.152 12 310,787 0.154 13 302,604 0.150 14 289,168 0.143 2,021,175 1.001 b. c. f ( x ) 0 for every x f ( x ) = 1 Note: f ( x ) = 1.001 in part (a); difference from 1 is due to rounding values of f ( x )....
View
Full
Document
 Spring '08
 Siddiqui

Click to edit the document details