{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

ReviewMath2224Fall2007_4

# ReviewMath2224Fall2007_4 - Math 2224 Common Exam Fall 2003...

This preview shows pages 1–4. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Math 2224 Common Exam Fall 2003 FORM A Instructions: Please enter your NAME, your ID NUMBER, the FORM DESIGNATION LETTER and your CRN NUMBER on the op-scan sheet. The index number should be written in the upper right—hand box labeled ”Course”. Darken the appropriate circles below the ID number and form designation letter. Use a No. 2 pencil; machine grading may ignore faintly marked circles. Mark your answers to the test questions in rows 1— 14 of the op-scan sheet. Your score on this part of the test will be the number of correct answers. You have one hour to complete this part of the ﬁnal exam. ' (0)9) , J) bl? 1) <1 we ’0 *IC (0 ‘) f\. liberal/ﬂu: 4(01‘})+’g7‘<01‘)0(\$ ) 7 J C3 101 e'i‘iaqﬁ MD, £3: 27"“[6 gxf‘ 7c “k; .. ‘D [1] The linearization of f(:r, y, z) = x2 + e” + yz3 at (0,1,1) is 9% ’ Us 1) 333+22—y+1 2) —2+x+y+32 3) —2—:z:+y+3z 4) 2—x—y—Bzz0 2 _ 2 _ _ L [2] The limit 11m u is X ”Y > G 3, (mm—40,0) 2332 + 1/2 .. - 1 3‘ «0 _) I 1) 1 2) E 3) —1 @Does not exist [3] The direction in which f (m,y) = 2mg — y2 + 3x2 has a maximum rate of change at (2, —-1) is ‘7]? (2'4): (Ix (3,4)) 1) 105+ 65' 2) —101— 65" 3) 101'— 65' 4) W371 . ' 3,»; (2,4)? . _ 2 _ 2 . 1 [4] The contour map f01 f (3:, y) — :1; 4y ceiisists of {.210 \1' MA 1 X >’ L‘ 2: l4» 1 1) Ellipses only 2) Circles, and a single point ‘1 V—’-¥° hkjpmblgj 3) Hyperbolas only 4) Hyperbolas, and a union of lines [5] Let f(:c, y) = g(u, v), Where u and v are functions of a: and y, Where u(1,l) = 2 v(1,1) = —3 1- 1x: 3“. ugﬁv'vx u\$(1,1) = 5 vz(1,1)= 1 V! \v 9112—3) = —2 9112—3): 6 {\ [(23 The partial derivative fx(1, 1) is 1) —4 2) 4 3) 12 4) —§ [6] A lamina occupies the planar region bounded below by the :r-axis and bounded above by the circle :32 + y2 = 4. Its density is p(cc, y) = 3:2 + yz. Its mass is 87T 6471‘ J ‘ 27r _ 7r _ 1 1) 2) 3 C394 4) 3 [ 1:“ ”t 2 055'; j 3 N j a rattle f]".ﬁ,w’ L; o [7] The volume of the solid bounded by the surfaces y = 2:2, z = O, and 23/ + z = 2 is given by the integral @1:/;/02_2y dzdydx 2)/_11/0x2/02_2y dzdydm 3) 111/3: Afgy dzdydx 4) [11/0262 /02—2x2 dzdydag 7k If} _ 2 1 [8] The value of / / 7rsin(7ry2) dy rim is 0 30/2 1)—1 2)1 3)2 4)3 [9] Which integral represents the volume of the solid inside the sphere m2 + y2 + 22 = 4 and outside the cylinder :32 + y2 = 1 ? 27r 37r/4 2 2_ 21r 57r/6 2 2' 1) /0 fm /1/sin(¢) p sm(¢)dpd¢>d9 @A [W /1/sm(¢) p Sin(¢)dpd(/)d0 27r3 27r 37r/4 2 27r / 2 3 / 2 ' d d d6 4 / / 2 ' d ,6 )/0 -/7r/4 1/8050» P s1n(¢) P <5 )/0 ”/3 l/sin(<i>) p sm(¢)dp 45d [10] In the use of partial sums to estimate the sum of the series co 1 oo _1 71. 2-7 2 —2 and Z ( ) ,vvhich of the following is true? In J 2 B 71:1714 n=l \TL/ ‘1 H: 7.} 2566‘ . 001 3 1 1 oo _ln 3 _1n 1 “.3,/ ~/1)Z———Z—_—andz(.)—Z( ) g— x» z _ n2 _ n2 16 _ n _ n 4 ' f» ,l’ n—1 n—1 11—1 71—1 6”" ‘6 v ii~ii>laiidi(_1)n~i(_l)n<l 71:an F1722 16 77F; n “:1 n _ 4 1‘6, 3) i 1 :3: 1 > 1 and i (—1)” i(_l)n > 1 71:1”2 n=1 ”2 16 n=1 77’ 71:1 77/ 4 oo 1 3 1 1 oo (~1)n 3 (_1)n 1 4 —~— —— < — d — ~ )Tgrﬁ Eng—16am ”2:21 n T; n >4 [11] Which of the following series converges? °° 1 °° °° (—1)” °° n n+1 W 1 —— 2 —1 n 3 _——@ < — > )Eﬂ/ﬁ )g( ) )gn'cosmvr) >712; n+1 n+2 33v 111:" 3 n(n+2)-nzv:zn~i (Q ”~7— 2 \ (mom 2) a. n1! ,_ l dhr ”"ﬁ‘ = H” , L (anYH’L) m 2. PM I “ ‘ ~V‘_ w. ‘v'v' L~~" "' K 3 0° " '2. e =l+X+L+L~"§—§ .2‘. 5‘. Mm, 9 e—Xr’l" a—&+¥_fa" [12] Which of the following is the Maclaurin series for f (cc) = 6“”“2? no 52‘, 3" n an 00 33271 00 ___1 71.23271 00 (_1)nm2n 00 \$211 3 (:4) X. 1)Z—2 , 2>:—( 2). @Z—— 4> ——, 7 N n=0 ( n)‘ =0 ( n)‘ n=0 n 71:0 7?" (if—b ' [13] For the power series 2 2”(4:13 — 1)“, which of the following is the open 2.]L1V~l l 4] 71:0 interval of convergence? [L] x —l \ < ]5- 1><giz> sea mes) Ave-:5) 13‘2“? 1 00 TL TL [14] The series 2 ak has partial sums Sn = Z ah = <1 + a) . Which of the l\ Y1 n: 6 [i=1 [i=1 following is true? 00 1) The series 2 ak diverges because, for every n, 3” 2 1. k=1 00 2) The series Z ak converges to 1. k=1 ‘ 00 @The series 2 ak converges to e. k=l OO 4) There is not enough information to determine whether the series Z ak, Ic=1 converges or diverges. ...
View Full Document

{[ snackBarMessage ]}