Ch29

Download Document
Showing pages : 1 - 3 of 29
This preview has blurred sections. Sign up to view the full version! View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: CHAPTER 29 Sources of the Magnetic Field 1* Compare the directions of the electric and magnetic forces between two positive charges, which move along parallel paths ( a ) in the same direction, and ( b ) in opposite directions. ( a ) The electric forces are repulsive; the magnetic forces are attractive (the two charges moving in the same direction act like two currents in the same direction). ( b ) The electric forces are again repulsive; the magnetic forces are also repulsive. 2 At time t = 0, a particle with charge q = 12 C is located at x = 0, y = 2 m; its velocity at that time is v = 30 m/s i . Find the magnetic field at ( a ) the origin; ( b ) x = 0, y = 1 m; ( c ) x = 0, y = 3 m; and ( d ) x = 0, y = 4 m. ( a ) Use Equ. 29-1; r = 2 m j , v = 30 m/s i ( b ) r = 1 m j ( c ) r = 1 m j ( d ) r = 2 m j B = 10 7 q ( v r )/ r 3 ; B = 9 10 12 T k B = 3.6 10 11 T k B = 3.6 10 11 T k B = 9 10 12 T k 3 For the particle in Problem 2, find the magnetic field at ( a ) x = 1 m, y = 3 m; ( b ) x = 2 m, y = 2 m; and ( c ) x = 2 m, y = 3 m. ( a ) Use Equ. 29-1; r = 1 m i + 1 m j ; v = 30 m/s i ( b ) r = 2 m i ( c ) r = 2 m i + 1 m j B = 10 7 q ( v r )/ r 3 ; B = 1.27 10 11 T k B = 0 B = 3.22 10 12 T k 4 A proton (charge + e ) traveling with a velocity of v = 1 10 4 m/s i + 2 10 4 m/s j is located at x = 3 m, y = 4 m at some time t . Find the magnetic field at the following positions: ( a ) x = 2 m, y = 2 m; ( b ) x = 6 m, y = 4 m; and ( c ) x = 3 m, y = 6 m. ( a ) Use Equ. 29-1; q = 1.6 10 19 C; r = ( i 2 j ) m; v = ( i + 2 j ) 10 4 m/s; B = 10 7 q ( v r )/ r 3 ; ( b ) r = 3 m i ( c ) r = 2 m j B = 0 ( v and r are colinear) B = 3.56 10 23 T k B = 4 10 23 T k 5* An electron orbits a proton at a radius of 5.29 10 11 m. What is the magnetic field at the proton due to the orbital motion of the electron? 1. Determine the speed of the electron; mv 2 / r = ke 2 / r 2 2. Use Equ. 29-1; B = ( e 2 /4 r 2 ) r /m k ; evaluate v = r /m k e B = 12.5 T Chapter 29 Sources of the Magnetic Field B 6 Two equal charges q located at (0, 0, 0) and (0, b , 0) at time zero are moving with speed v in the positive x direction ( v << c ). Find the ratio of the magnitudes of the magnetic and electrostatic force on each. Note that v and r , where r is the vector from one charge to the other, are at right angles. The field B due to the charge at the origin at the location (0, b , 0) is perpendicular to v and r , i.e., in the z direction, and its magnitude is B = ( /4 ) qv / b 2 . The magnitude of the force on the moving charge at (0, b , 0) is F B = qvB = ( /4 ) q 2 v 2 / b 2 . ...
View Full Document