{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

# HW7 - Math 3013 Homework Set 7 Problems from 3.3(pgs...

This preview shows pages 1–2. Sign up to view the full content.

Math 3013 Homework Set 7 Problems from § 3.3 (pgs. 211-212 of text): 1,3,5,7,9,11 Problems from § 3.4 (pgs. 226-229 of text): 1,5,7,16,20,26 1. (Problems 1,3,5,7,9,11 in § 3.3) Find the coordinate vector of the given vector relative to the indicated ordered basis. (a) (Problem 3.3.1) [ - 1 , 1] R 2 , relative to ([0 , 1] , [1 , 0]) (b) (Problem 3.3.3) [4 , 6 , 2] R 3 , relative to ([2 , 0 , 0] , [0 , 1 , 1] , [0 , 0 , 1]) (c) (Problem 3.3.5) [3 , 13 , - 1] R 3 , relative to ([1 , 3 , - 2] , [4 , 1 , 3] , [ - 1 , 2 , 0]) (d) (Problem 3.3.7) x 3 + x 2 - 2 x + 4 in P 3 , relative to ( 1 , x 2 , x, x 3 ) (e) (Problem 3.3.9) x + x 4 in P 4 , relative to ( 1 , 2 x - 1 , x 3 + x 4 , 2 x 3 , x 2 + 2 ) (f) (Problem 3.3.11) x 3 - 4 x 2 + 3 x + 7 relative to B = ( x - 2) 3 , ( x - 2) 2 , x - 2 , 1 2. Let F be the vector space of functions f : R R . Determine whetther the following functions T are linear transformations. (a) (Problem 3.4.1) T : F R : T ( f ) = f ( - 4) . (b) (Problem 3.4.5) T : F F : T ( f ) = - f 3. (Problem 3.4.7) Let C be the space of all continuous functions mapping R to R , and let T : C C be defined by T ( f ) = x 1 f ( t ) dt . If possible give three different functions in ker ( T ). 4. (Problem 3.4.16) Let V and V be vector spaces having ordered bases B = ( b 1 , b 2 , b 3 ) and B = ( b 1 , b 2 , b 3 , b 4 ), respectively. Let T : V V be a linear transformation such that T ( b 1 ) = 3 b 1 + b 2 + 4 b 3 + b 4 T ( b 2

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}