15.4%20Ex%2030%20-%20%2038

# 15.4%20Ex%2030%20-%20%2038 - 670 C H A P T E R 15 D I F F E...

This preview shows pages 1–3. Sign up to view the full content.

670 CHAPTER 15 DIFFERENTIATION IN SEVERAL VARIABLES (ET CHAPTER 14) The value given by a calculator is: p ( 1 . 9 )( 2 . 02 )( 4 . 05 ) 3 . 9426 30. 8 . 01 ( 1 . 99 )( 2 . 01 ) SOLUTION We use the linear approximation of the function f ( x , y , z ) = x yz at the point ( 8 , 2 , 2 ) ,whichis f ( 8 + h , 2 + k , 2 + l ) f ( 8 , 2 , 2 ) + f x ( 8 , 2 , 2 ) h + f y ( 8 , 2 , 2 ) k + f z ( 8 , 2 , 2 ) l (1) We compute the values of the function and its partial derivatives at ( 8 , 2 , 2 ) .Thisgives f ( x , y , z ) = x f ( 8 , 2 , 2 ) = 4 f x ( x , y , z ) = 1 f x ( 8 , 2 , 2 ) = 1 2 f y ( x , y , z ) = x y ( ) 1 / 2 =− 1 2 x ( ) 3 / 2 z 1 2 xy 3 / 2 z 1 / 2 f y ( 8 , 2 , 2 ) 1 f z ( x , y , z ) = x z ( ) 1 / 2 1 2 x ( ) 3 / 2 y 1 2 1 / 2 z 3 / 2 f z ( 8 , 2 , 2 ) 1 Substituting these values and h = 0 . 01, k 0 . 01, l = 0 . 01 in (1) gives the following approximation: 8 . 01 ( 1 . 99 )( 2 . 01 ) = 4 + 1 2 · 0 . 01 1 · ( 0 . 01 ) 1 · 0 . 01 = 4 . 005 The value given by a calculator is 4 . 00505. The error is 0 . 00005 and the percentage error is at most Percentage error 0 . 00005 · 100 4 . 00505 0 . 00125% 31. Estimate f ( 2 . 1 , 3 . 8 ) given that f ( 2 , 4 ) = 5 , f x ( 2 , 4 ) = 0 . 3, and f y ( 2 , 4 ) 0 . 2. We use the linear approximation of f at the point ( 2 , 4 ) f ( 2 + h , 4 + k ) f ( 2 , 4 ) + f x ( 2 , 4 ) h + f y ( 2 , 4 ) k Substituting the given values and h = 0 . 1, k 0 . 2 we obtain the following approximation: f ( 2 . 1 , 3 . 8 ) 5 + 0 . 3 · 0 . 1 + 0 . 2 · 0 . 2 = 5 . 07 . In Exercises 32–34, let I = W / H 2 denote the BMI described in Example 6. 32. A boy has weight W = 34 kg and height H = 1 . 3. Use the linear approximation to estimate the change in I if ( W , H ) changes to ( 36 , 1 . 32 ) . Let 1 I = I ( 36 , 1 . 32 ) I ( 34 , 1 . 3 ) denote the change in I . Using the linear approximation of I at the point ( 34 , 1 . 3 ) we have I ( 34 + h , 1 . 3 + k ) I ( 34 , 1 . 3 ) I W ( 34 , 1 . 3 ) h + I H ( 34 , 1 . 3 ) k For h = 2, k = 0 . 02 we obtain 1 I I W ( 34 , 1 . 3 ) · 2 + I H ( 34 , 1 . 3 ) · 0 . 02 (1) We compute the partial derivatives in (1): I W = W W H 2 = 1 H 2 I W ( 34 , 1 . 3 ) = 0 . 5917 I H = W H H 2 = W · ( 2 H 3 ) = 2 W H 3 I H ( 34 , 1 . 3 ) 30 . 9513 Substituting the partial derivatives in (1) gives the following estimation of 1 I : 1 I 0 . 5917 · 2 30 . 9513 · 0 . 02 = 0 . 5644

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
SECTION 15.4 Differentiability, Linear Approximation, and Tangent Planes (ET Section 14.4) 671 33. Suppose that ( W , H ) = ( 34 , 1 . 3 ) and W increases to 35. Use the linear approximation to estimate the increase in H required to keep I constant. SOLUTION The linear approximation of I = W H 2 at the point ( 34 , 1 . 3 ) is: 1 I = I ( 34 + h , 1 . 3 + k ) I ( 34 , 1 . 3 ) I W ( 34 , 1 . 3 ) h + I H ( 34 , 1 . 3 ) k (1) In the earlier exercise, we found that I W ( 34 , 1 . 3 ) = 0 . 5917 , I H ( 34 , 1 . 3 ) =− 30 . 9513 We substitute these derivatives and h = 1 in (1), equate the resulting expression to zero and solve for k .Thisgives: 1 I 0 . 5917 · 1 30 . 9513
This is the end of the preview. Sign up to access the rest of the document.

## This homework help was uploaded on 04/22/2008 for the course MATH 32A taught by Professor Gangliu during the Winter '08 term at UCLA.

### Page1 / 5

15.4%20Ex%2030%20-%20%2038 - 670 C H A P T E R 15 D I F F E...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online