Unformatted text preview: , g ( n + 2) = 2 g ( n + 1) + 6 g ( n ) , ∀ n ≥ . 5. Find an explicit solution for the recurrence { h ( n ) } n ≥ satisfying h (0) = 1 , h (1) = 4 , h ( n + 2) = 4 h ( n + 1)4 h ( n ) , ∀ n ≥ . * ( extra credit ) F n , n ≥ , are the Fibonacci numbers: F = 0 , F 1 = 1 , F n +2 = F n +1 + F n , ∀ n ≥ . Prove that n X k =0 ± n + k 2 k ² = F 2 n +1 , ∀ n ≥ . 1...
View
Full Document
 Spring '07
 Graham
 Fibonacci number, explicit solution

Click to edit the document details