exam2sampleq

# exam2sampleq - Sample questions for Exam 2 1 Find the...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Sample questions for Exam 2 1. Find the general solution to the following equations: a. y + 2y + 10y = 0 b. y - 4y - 5y = 0 c. y + 6y + 2y = 0 d. y + y + 0.25y = 0 e. y - 6y + 25y = 0 f. y + 8y + 15y = 0 g. y + 2y - y - 2y = 0 h. y - 2y + y = 0. i. y - 3y + 3y - y = 0. j. y - 3y - 4y = 0. 2. Solve the initial value problem y + 4y + 4y = 0, 3. Find the general solution to y - 2y + 17y = e3t + 1. 4. Find the general solution to y - 2y - 8y = te4t + 3et . 5. Find the solution to the initial value problem y + y - 2y = 5e3t , 6. Find the general solution of y - 2y - 3y = -5 cos t + 6e-t 7. Consider the equation 8y + y + 8y = 0, y(0) = 2, y (0) = 0, describing a spring oscillator. Is the solution of this equation critically damped, underdamped, or overdamped? Make a SKETCH of the solution. Now consider, 8y + by + 8y = 0. Name a specific value of b which causes this "spring" oscillator to display each of the other two types of motion. Make a sketch of each of these other two solutions, y(t). Which of these three types would you like to have in your cars shock absorber system? How about in the spring which closes your back screened door? Why? 1 y(0) = 4, y (0) = 6. y(0) = 3, y (0) = 1. ...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online