FIN301Reserve - mi W‘s- Him Q31; :3 ifffltfi FIN301...

Info iconThis preview shows pages 1–22. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 6
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 8
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 10
Background image of page 11

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 12
Background image of page 13

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 14
Background image of page 15

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 16
Background image of page 17

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 18
Background image of page 19

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 20
Background image of page 21

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 22
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: mi W‘s- Him Q31; :3 ifffltfi FIN301 MATERIALS topic of "capital hxdgetjng." Therefore, it Rakes sense to get used to ' seeing and dealing with them early on. Good luck ) End of Period cash Flows r Situation A situation 13 find 0“ Year I EEEEEEEEEEE—"§§§§§i£§ Withdrawals Eggggigg 0 $300 ' I " $40 1 R ,40 2 R V _ ' I 30 —n— 3 I R 40 4 “0— 40 a R 40 6 R 4c 7 1 7b :20 8 ' I 70 4o 9 30 4o 10 . 30 4o 11 30 ???? _ _ ._ ___._—___.__ {Qdestions appear ing on the following two gages refer to the table above.) NOTICE: This Manama: May 556 Pratede . By Copyright Law {We S?.-U.S.'.Codel - Nona-z: This Mafia? May 39 $th By Copyright Law {Title 1? US. Genie} 1. Situation A. Assmre'that you deposit $300 today in a savings account paying 6% compound annual interest. Given the pattern of cash withdrawals pictured in the table, what equal periodic withdrawal (R) can you make at the end of years 1, 2, 3, 5, and'6 such that your ending balance (after the last withdrawal in year 11) is zero? [Show your work in detailed step-by—step fashion and identify any interest factors used as to type, rate, and number of periods - e.g., (PVIF6%’10 yrI).] Answer: (lO'PtS-) Situation A: d 1 - 2 3 A 5 6 7 3 9 L9 11 -|.___.___I_.._..__ l____._1______l_______l_____ l___.__|v_____l-,_a‘_,___I-_____,_I_____l i l’ 3 l l I I I I \l f I ~3oo R R a o R R‘ 70 10 3o 30 3o : :_ : : : Y : : : (123.31) : E : Y* < ------------------------------ --: : J .: (90.46) : I i : x (80.19) - x# < ------------------------------------------- -—: (50.28) 1. Y. = (70)(PVIFA62,2) = (7o)(1.833) = 123.31 Y* (128.31)(PVIF 62,6) (128.31)(.705) = 90.46? 2; x_ a (30)(PVIFABZ;3) ' 2-féo)(2.673)»='80.19-' x* = (so.19)(pvxrsz'8) (80.19)(.627) = 50.23 it So 300 - 90.46 - 50.28 = 159.26 159.26 = R(PVIFAGZ$6) - R(PVIF62’4) 159.25 = a(4.917) - R(.292) = R(4.125) R = 159.26/4.125 = 38.61 e‘g" ( 6%,10 yr.)‘] ' Answer: (10 pts,) Situatiéfi‘h: ‘ a i 2 3 A 5 6 7 a 9 La 11 l_____‘___,__I_____l_____I_____I______l_______l______l_____I______l'_.____ Ir 5 I I 7: I I- n n l | l- I 40 #0 40 -3 40 40 A 20. 40 40 40 l—-—-- --—-- ----- ----- -~--— ----- ----- ----- -—-—- --> X minus ‘70 i : -------------------------------------------- u> Y 20 a I _ _ : ----------------- --> z .. I. X = (AO)(FVIFA62,11)(1.06)A ... annu1ty due = (40)(1A,972)(1.06) = 634.31 I g: ?'= (7o)(rv136z;8) = (io)t;.594)‘=-111.5s 3. z = (20)(FVIFGZ A) = (20)(1.262) = 25.24 X.-_Y - ZI= 634.81 - 111.58 - 25.24 = 497.99 “MU 531 “'"'"' HW’QLI ANNUITY PROBLEMS Dr. Wachowicz Finance 301 Frame A: Cash receipt at the END of year ... time f 0 l 2 3 4 _5 6 7 8 9 10 l I l I I l | l I l i ____1__l__l—_I____l-_—_l_—_.l—IiH____l___-l___-_l___| $ : A A R. R R. R. A A (a) (b) (c) (d) (e) , ' (f) Frame B Cash receipt at the END of year time E 0 l 2 3 4 S 6 7 8 9 10 I I I I I I i l I I l ._.__l_l____l____i___l___l____l____i_,___l___l___l.____l s i A A R R. R. R. A A (g) (h) (i) ' _ r ' (j) (k) (l) 1. Assume that the time lines in Frames A and B (above) depict annual cash flows of R dollars at the ends of the periods indicated. If the appropriate compound annual interest rate is 8 percent, what stream depicted in Frame A or Frame B equals $1,000 as of point (a)? point (b)? point (c)? point (g)? point (h)? point (i)? 2. Assume that the time lines in Frames A and B (above) depict_annual cash flows of R dollars at the ends of the periods indicated. If the appropriate compound annual interest rate is 8 percent, what dollar value does R take on if the future value of the cash flow stream depicted in Frame A or Frame B equals $1,000 as of point (d)? point (e)? point (f)? point (j)? point (k)? point (1)? Answers: Question 1 -- When the present value of the cash flow stream depicted in Frame A or Frame B equals $1,000 at point , R equals (a), $292.23; (b), $250.44; (c), $231.91; (g), $364.83; (h), $312.60; (i), $289.44 Question 2 -- When the future value of the cash flow stream depicted in Frame A or Frame B equals $lr000 at point , R equals (d), $170.44; (e), $157.83; (f), $135.28; (j), $212.72; (k), $197.01; (1), $168.83 .NOH ,OE: This Mamie-F ‘Ma' ‘ ' it _ , y Ba PM vs Shamang Lew mus I=7v££35mdixm annuity.def (revised) time § 0 1 2 3 4 5 6 7 3 9 10 _____I_ml_____1_____l_____I___h_1___,_I_____£,____1_____i_____I_____l $ I A R R R , R R R(PVIFA8% ’ 5)<_1__1—_1___I__1 (a) $1,000 <Hm——~—J , $1,000 -= R(PVIFA8%’5) x (PVIFBELZ) $1,000 - R(3.993) x (.857) — R(3.422) R - $1,000/3.422 = $292.23 when the present value of the cash flow stream equals $1,000 at point (a) time : 0 1 2 3 4 5 6 7 8 9 10 I I I l I I I I l I I l___l______l___l—__I______I_____l_—__l____l___l___l I $ 1 R R R R R $1,000<J__1—1*'I_*1 I (b) $1,000 s R(PVIFA8%'5) $1,000 :— R(3.993) R - $1,000/3.993 - $250.44 when the present value of the cash flow stream equals $1,000 at point (13) time , 0 1 2 3 4 5 6 7 8 9 10 I I l I I I I 1 l l I I I___l____1___l_,__l_____l___l___l__l______l___l____ $ 1 R R R R R $1,000<_I“1—I__I l (c) $1,000 = R + R(PVIFA8%’4) $1,000 = R + R(3.312) - R(4.312) R = $1,000/4.312 =- §231.91 when the present value of the cash flow stream equals $1,000 at point (C) IR + 23511? : 45,? u ‘ annuity. def (revised) time I 0 1 2 3 4 5 6 7 8 9 10 I I ' I I I I I I I I J 5 I __—__ Rf———1§——__1{hf—*hf__h—Rf——fih _——__ h———_ L_1_L_J_‘ > $1,000 ((0 $1,000 = R(FVIFA8% 5) - R(5.867) R - $1,000/5.867 - $170.44 when the future value of the cash flow stream equals $1,000 at point (d) time I 0 l 2 3 4 5 6 7 8 9 10 I I I I | I .I I I I I _.'__I___I_____l—_I___I___,_I___I____I___I_____l_—I,___I $ : R R R R {R wfilfoo 0?) $1,000 2 R(FVIFA8%’5) x (1.08) $1,000 - R(5.867) x (1.08) - R(6.336) R = $1,000/6.336 a $157.83 when the future value Of the cash flow stream equals $1,000 at point (e) - time I 0 l 2 3 4 5 6 7 8 9 10 l I l I I I l | I I | ] ____I_l.____l_____l_,_l____l______.l_____l___l__l_____l_____ $ : R R R R R I I l . >R(FVIFA8% , 5) Ifixlfioo l (f) $1,000 = R(FVIFA8%IS) x (FVIF8%'3) $1,000 - R(5.367) X (1.260) - R(7.392) R = $1,000/7.392 = $135.28 when the future value of the cash flow stream equals $1,000 at point (f) annuity.def (revised) —_..._._.._..—_—._——__._ ' R R R R R <.______h_J minus R $1,000 - {R(PVIFA8%;5Q x (PVIF8%’2)} - R(PVIF8%’5) $1,000 - [R(3.993) x (.857)] - R(.601} S $1,000 a R(3.422) — R(.681) - RC2.741) R - $1,000/2.741 - $364.83 when the present value of the cash flow stream equals $1,000 at point (g) annuity.def (revised) time —......_——.—.—._..—_'_—._._.——___...__ The above pattern is equivalent to R R R R R <p_e_eJ_____J_____J_____J_____J minus <%__—__l $1,000 a R(PVIFA8%,5) - $1,000 = R(3.993) - R(.794) c R(3.l99) R - $1,000/3.199 a $312.60 when the present value of the cash flow stream equals $1,000 at point (h) -—..._ R. R R R R i_Ll__l__l minus R <_____~___e_J $1,000 = R + R(PVIFA8%’4) - R(PVIF8%’2) $1,000 - R + R(3.312) - R(.857) = R(3.455) R - $1,000/3.455 - $289.44 when the present value of the cash flow stream equals $1,000 at point (i) annuity.def (revised) time : 0 1 2 3 4 5 5 7 8 9 10 I I I I I I I I I l I ______I‘_I_____I—__ ____l____f___,__l____l_____l______1_'___l_,__l $ : R R R R LJ‘_L’ > $1,000 (5) mi nus R g) $1,000 - R(FEIFA8%’5) - RCFVIF8%’2) _$1,000 = R(5.8§7) ~ R(l.166) a R(4.701) R = $1,000/4.701 = $212.72 when the future value of the cash flow stream equals $1,000 at point (j) annuity.def (revised) time } 0 l 2 3 4 5 6 7 8 9 10 I_! i E E 1 E F i i I I 3 t R R R R w>$l , 000 l (k) , The above pattern is equivalent to R R R R R l‘l——'_L_[‘> minus R $1,000 = [R(FVIFA8%'5) x (1.08)] — R(FVIF8%,3) $1,000 = [R(5.867) x (1.08)] - R(l.260) $1,000 a RC6.336) - R(1.260) 4: R(5.076) R - $1,000/5.076 - $197.01 when the future value of the cash flow stream equals $1,000 at point (k) annuity.def (revised) -___————_-—_._ minus $1,000 - [R(FVIFA8%,5) x (FVIF8%,3)] - R(FVIFv8%,5) $1,000 = [R(S.367) x (1.260)] - R(1.469) $1,000 - R(7.392) -_R(1.469) - R(5.923) R - $1,000/5.923 a $168.83 when the future value of the cash flow stream equals $1,000 at point (1) annuity.def (revised) V'V‘Gu div-Vii UH run-vy- i s i . RESERVE " Exam, 7x 1 no Not REMOVE STAPLES NOTICE: This Material Hay Boflrotect‘ed By .Copyright LawlTxtle IT U.S. Code} ‘ FINANCE 301 I PINK exam Dr. Wachowxcz Second Exam Fall 1990 PRINT your name here: SIGN your name here: ___._________________“________. Max. Estimated Time in Minutes Qfl Max. Pts. ‘1 M 3 1 6 lees-easescooe ' f 3 2 6 III-cocooeo-uo 99‘0 “o I . 3 3 6 IOOCOOCICICIOO ‘3' o M ‘0‘ 99' v3 ' bl: v0 3 A 4 III-IOOI'OIIIO- . 0 ’ (M 0 “9 IQ 9 5 CIOUIIIOIIICII / Irv/9M (ED 7 6 13 {3 1o 7 15 19 8 .11 _.__.._.__..__. 48 I? RESER¥E_ROOM flew a) To get any credit, you must show your work on problems. Calculations must be expressed in a manner which clearly indicates the nature of the formulas and/or logic used. b) It's quality of work, not quantity, that counts. c) no NOT mm THIS 300nm APART. - d) Make sure that you have all six (6) pages of questions plus fun: (4) pages of Present and Future Value tables before you beg:n!!1!! 9) PRINT your name on the very back of this booklet. f) Budget your time -- see estimated time in minutes for each question. ‘ 8) RECEIVING OR GIVING AID IN AN EXAMINATION 15 A CAUSE FOR DISHISEQL FROM THE UNIVERSITY. FOR USE IN NOTICE: This Maternal May Be Protectda IBy Copyfight.LsnvilhflatIZFUJEZGBdel “,4: yM/IQ“~ 74.314! - 0. fl Q A. I - V I “it. 1. Which amount is worth more at an 8 . $2,000 today or $3, work.) (6 pus.) [ J $2,000 today is worth more at 8!. $3,000 received after 6 years is worth mere at 82. at 82, both are worth the same. will increase his weight at 3 Currently. he weighs 150 pound percent a year. birthday? . What will he weigh on his 60th Answer: (6 pts.) “ ~05fl1 can 4W.m 1 3. Roy's Orbs & Sons, Inc. stock isaue outstanding. On January 1 the market price per share is $70. Dividends are pa' id annually on December 31. If you require a 14 percent annual return on this investment. what is its value to you (on a per share basis) on January 17 4. In connection with the U.S. Bicentennial, the U.S. Treasury once contemplated offering a savings bond for $1,000 which would be worth $1 million in 100 years. What compound annual interest rate is implied by these terms? (HINT: make use of the formula at the top of one of the Tables.) Answer: ________ (4pm.) A. C. -I.a (u. The future value of this annuity is calculated as of one period after the last cash flow. (3 pta.) a. _ ordinary annuity b. annuity due c. simple annuity The market value of a firm is the higher of its or its ... (3 pts.) going-concernhvalue a. book value. ' b. intrinsic value. c. liquidation value. A zero-coupon bond would most likely be originally sold at (a) (3pts.) a. discount. b. c. premium.‘ par. If a bond sells at a discount. then its yield-to-maturity (YTM) is _______________ its coupon rate. (3 pts.) a. less than L?' b. greater than c. equal to ' If the constant dividend growth model was appropriate to apply to a particular share of common stock, the market-dc ermined ield on the common stock would be equal to ... (3 pts.) a. 01/(ké-'s)' . . .b.- (DI/Po)+-s c. (Di/P0) . The approximate zield-to-matugitx on a bond can be thought of as ... (3 pta.) a. (average annual income)/(average price). b. (annual interest payment)/(average price). c. (P1 - Po)/PO. M— 6. You have a choice of purchasing a one (CD) from 2 different banks. Bank A of 12.352, compounded yearly. Bank B of 122. compounded quarterly. ~year certificate of deposii quotes a nominal annual rat: offers a nominal annual _rate A. What is the effective a nnual interest rate (or APR) on the CI from Bank A? . Answer: ' (5 pts.) B. What is-the effective annual interest rate (or APR) on the CD from Bank B? Answer: _ (5 pts-) C. (Briefly) Which CD should you buy and why? [ ] Buy the CD from Bank A. Buy the CD from Bank B. Because ... (3 pts.) ‘,- ,“I '1" .‘Ae— 7. The 10 percent coupon rate bonds of U.S. Blivet Corporation have 12 years remaining to maturity. The current market value of one of these $1,000 par value bonds is $800. Interest is paid semiannually, Tammy Whynot places a nominal annual required rate of return of 14% on these bonds. A. What dollar value would Tammy place on one of these bonds (assuming semiannual discounting)? Answer: (10 pts.) B. What is the current yield on one of these bonds? Answer: (5 pts.) t2301.f90 8. Assume that you will be open a savings account today by depositing $100,000. The savings account pays 6% compound annual interest. One year from today you will start making withdrawals to achieve the following pattern of cash flows over time. (NOTE: Today is time period zero; one year from today is the end of time period 1; etc.) Cash deposits at the END of year ... time} 0 l 2 3 4 5 6 7 8 9 I I I I I I I I I I I I I I I l I I I I I I ____l_l______I______I______I______l_"_m“mlhh____l______l______l______l I I I I I I I I I , I I $ l R R R 9,000 9,000 9,000 9,000 9,000 9,000 How large must each identical R Withdrawal be to leave you with exactly a zero balance after your final $9,000 dollar withdrawal is made in year 9? Answer: (12 pts.) t230l.f90 TIN" ,81.1t11r0..701110111t01'001 70-0002 _ r - .‘ '-, 'l of $1 01: 12 at the 81111 of .n_P01.-10d0 (Purim) ' n . '.' - (“H.011 533‘}. 96:..‘1; . . . z" a. _ ‘ .l, f 1701' I 0" 1.000 1.000 1.000,. L _ _--- . j 1 1.010 1.020 1.000‘ 1.040 . ._ . ' 1.000 .i_ 2' 1.020 _1.040 1.001 1.002 [1.102)- 1.124 __ 1.140 1 1.100. 0 1.000 1.001 1.000 1.120 “4.100 1.101 1.220 ' 1.200, '4 1.041 1.002 -1.120 1.170 1.210 1.202 1.011 1.0017 0 1.001 1.104 1.100 1.217! '1.270 1.000, 1.400_ .1._400I'_ 0 1.002 1.120 1.104 1.200. 1.040 1.410' 1.001 1.007 f ‘ 7. 1.072 1.140 1.200 1.010 1.407 1.004 1.000 1.714" .0 1.000 1.172 1.207 1.000 1.477 1.004 1.710 , 1.001 .0 1.004_ 1.100 - 1.000 1.420 . 1.001 1.000 1.000 1.000 10 1.100 1.210 1.044 1.400 1.020 1.701 1.007 2.100 11 1.110 1.240 1.004 1.000 1.710 1.000 2.100 2.002 12 1.127 1.200 1.420 1.001 1.700 2.012 2.202 2.010 10 1.1001 1.204 1.400 1.000_ 1.000 2.100 2.410 2.720 . .. ' . ., 14 1.140 1.010 1.010 1.702 1.000 2.201 2.070 2.007 . . - . 4.007.:-' 0.001; 10 1.101 1.040 1.000 1.001 2.070 2.007 2.700“ 0.172 0.042 4.177 4.700 0.474 ‘ 0.20.1; 10 1.170 1.070 1.000 1.070 2.100 2.040 2.002. 0.420 0.070 '4.000. 0.011 0.100 " 7.0013 17 1.104 1.400 1.000 1.040 2.202 2.000 0.100 r 0.700 4.020 0.004 0.000 0.000 7.0013 10 1.100 1.420 1.702 2.020 2.407 2.004 0000 0.000 4.717 0.000 0.044 7.000. 002-, 10 1.200 1.407 1.704 2.107 2.027 0.020 0.017 4.010 0.142 _0.110 7.200 0.010______ 19.103; 20 1.220 1.400 1.000 2.101 2.000 0.207 0.070 4.001 0.004 0.720 0.002 0.040 11.02:; 24 1.270 1.000 2.000 2.000 0.220 4.040 0.072 0.041 7.011 0.000 I 12200 10.170 10.701}- 20 1.202 1.041 2.004 2.000 0.000 4.202 0.427 0.040 0.020, 10.000 10000 17.000 21.20;. 00 1.040 1.011 2.427 0.240 4.022 0.740 7.012. 10.000 10200 17.440 22.002 20.000 00.1111 40 1.400- 2.200 0.202 4.001 7.040 10.200 14.074 21.720 01.400 40.200 00.001 00.001 102.701?E 00 1.040 2.002 4.004 7.107 11.407 10.420 20.407 40.002 74.000 117.001 104.000 200002 400.701.- 00 1.817 8.281 6.882 10.620 18.878 82.988 67.948 101.267 178.081 804.482 624.067 887.697 - . . ...- - —-.-........ .. ......._.—...—‘.-Q; ,._.. . . I I i 1: 115111017. . ‘.- I 77 14"» 15".. 16% 17% 18'1- 199. 10'}. 14'.- 1890 3196 _..._.. .. ————-—-——..__.—.__________ ' 0 1.090 1.000 1.000 1.000 LM 1.1181 1.1817 1.1!!) 1.000 1.000 I 1.148 1.150 1.160 1.170 1.180 1.190 1.100 1.140 1.180 ‘ 1.810 1 1.100 1.311 1.346 1.369 1.391 1.416 1.440 1.538 1.688 1.741 3 1.481 1.511 1.561 1.601 1.648 1.685 1.718 1.907 1.067 2.000 4 1.689 - 1.749 1.81 1 1.874 1.939 1.1785 1.874 1.364 1.684 8.1136 5 1.915 1.01 I 1.100 1.191 1.188 1.886 1.488 1.931 8.486 4M? 5 1.195 1.318 1.486 1.565 0.700 1.8411 1.986 8.685 4.898 5190 " 2.501 1.660 1.816 8.1811 8.185 8879 8.583 4.5“ ' 5.619 6.988 I ‘ I 1.858 3.059 8.178 8.511 8.759 4.811 4000 5.590 7.186 9.117 8 8.151 8.518 8.808 4.108 4.485 4.785 5.160 6.931 , 9.118 11.166 .18 8.707 4.1146 4.411 4.807 5.184 5.695 6.191 8.594 11.806 . 16.060 I 88 4.116 4.651 5.1 17 5.614 6.176 6.777 7.4811 10.657 15.111 ' 11.199 81 4.818 5.850 5.916 6.580 7.188 8.064 8.916 18.115 19.848 17.988 . ' 18 5.491 6.153 ' 6.886 7.699 8.599 9.596 10.699 16.886- 14.759 '7 86.987 - I4 6.161 7.076 7.988 0.007 10.147 11.410 11.839 10.819 81.961 48.757 , 85 7.138 8.187 9.166 ' 10.589 11.974 18.5911 15.407 15.196 40.565 64.859 _ - 16 8.187 9.858 10.748 11.880 14.119 16.171. 18.488 81.148 1 51.918 84.954 ,_ ' . 17 9.176 10.761 11.468 14.416 16.671 19.144 11.186 . 88.741 ' 66.461 1 11.189 _ .18 10.575 11.375 14.468 16.879 19.678 1.1.981 16.618, 48-039 85.071 148.018 ‘ 19 11.056 14.181 16.777 19.748 18.114 17.151 81.948 59.568 108.890 195.891 ‘7 39 13.748 16.867 19.461 13.106 17.898 - 81.419 88.888 78.864 189.380 157.916 28.111 18.615 85.136 48.197 58.109 65.081 79.497 174.681 874.144 788.02.! 1,608.1!) 3,814.3- 15 26.461 31.919 40.874 50.658 61.669 77.388 95.896 116.541 478.905 1,038.59 8.18013 ' a 50.950 66.111 85.850 1 1 1.065 148.871 184.675 187.376 684.810 1,645.50 4,141.07 1.9.1488 40 188.884 167.864 878.711 538.869 750.878 1,051.67 1,469.77 5,455.91 19.416] 66,510.! 119,561 511 7111.188 1,083.66 1,678.70 1,566.11 8,917.86 5,988.91 9,1CIJ.44 46.89114 819.850 68 1,595.91 4384M 7,870.10 11,885.44 10,555.] 34,105.17 56,3475 4011995 " ' ' W_‘ - ‘211120: 1111071001 10010110 exceed 1.000.!!!) - P0000111: 9011.10 111001-051; 1‘00000257 0f 11 It for 11 period: (WIT-'1 - --‘.-.- * . - ..-'\ ':._L(5.&r4_{a'.5; 13";- 2323:??f‘4'0'p ,7 1.000 1.000 1.000 - 1.000 1.000 1.000‘ 1.000 ' 1.000. 1130031500 0.000 0.000 0.071 0.002 0.002 0.040 0.005 0020 _, 0.017., 0.000 a; 0.001 .‘..,0.000 “0.005. 0.000 70.001 _ 0.040 0.025 0.007 0.000 0070 0.057 0.042 0.020,_ 0012 0.707.401” 0.071 0.042 0.010 0.000 0.004 0.040 0.010 0.704 0.772 0.7010.701..0.712.;,..0.000 0.001 0.024 0.000 0.055 0.020 0.702 0.700 0.700 0.700 0.000 0.050__j0.000 50010 0.051 0.000 0000 0.022 0.704.“ 0.7477 0.710 0.001“ 0.000, 0.021. 0.000.. 0.007 r0040 '2 ‘ .1.- Li-‘Wk‘.fl.djgfl'§rféom. 0.042 0.000 0.000 0.700 0.740 0.700 0.000 0.000 0.000 0.004 M. 0.000 1000710000. 0.000 0.071 0.010 0.700 0.711 0.000 0.020 0.000 0.047 0.010 7, 0.4021 0.452 A: 0.420;. ~. 0.020 0.000 0.700 0.701 0.077 0.027 0.002 0.040 0.502 0.407 1" 0.404 '0.404 10.070; _ 0.014 0.007 0.700 0.700 0.045 0.502 0.544 0.000 0.400 0.424 ‘ 0.001 . ,_. . _ 0.005 0.020 0.744 0.070 0.014, 0.000 0.500 0.400 0.422 0.000.,000232; 1, 0.595 0.504 0.722 0.550 0.555 0.527 0.475 0.429 0.355 0.350 0.317 0.557 0.755 0.701 0.525 0.557 0.497 0.444 0.397 0.555 0.319 0.255 0.579 0.773 0.55 1 0.501 0.530 0.459 0.4 15 0.355 0.325 0.290 0.255 0.570 0.755 0.551 0.577 0.505 0.442 0.355 0.340 0.299 0.253 0.232 0.743 0.542 0.555 I 0.451 0.4 17 0.352 0.315 0.275 0.239 7 0.209 0.553 0.725 0.523 0.534 0.455 0.394 0.339 0.292 0.252 0.215 0.155 0.544 0.7 14 0.505 0.513 0.435 0.371 0.317 0.270 0.231 0.195 0.170 ‘ 7 _ 0.535 0.700 0.557 0.494 0.415 0.350 0.295 0.250 0.212 0.150 0.153 0.1” 0. 1 11 ' 0.525 0.555 0.570 0.475 0.395 0.331 0.275 0.232 0.194 0.154 0.135 0.1 15 0.095 0.520 0.573 0.554 0.455 0.377 0.312 0.255 0.215 0.175 0.149 O. 124 0.104 0M7 0.755 0.522 0.492 0.390 0.310 0.247. 0.197 . 0.155 0.125 0.102 0.052 0.055 0.053 0.750 0.510 0.475 0.375 0.295 0.233 0.154 0.145 0.115 0.092 7 _ 7 0.742 0.552 0.412 0.305 0.231 0.174 0.131 0.099 0.075 0.057 0.044 0.033 0.025 .7 0.572 0.453 0.307 0.205 0.142 0.097 0.057 0.045 0.032 0.022 0.015 0.011 0.” '- 0.505 0.372 0.225 0.141 0.057 0.054 0.034 0.021 0.013 0.009 0.005 0.000 0.002 . 50 0 550 0.305 0.170 0.095 0.054 0 030 0.017 0.010 0.005 0.000 0.002 0.011 0.001 PERIOD. 7 . '. ,' . ' n 14% 15% 16"!- 17'i 15% 19% 10% 141‘- 111'1'0 3170 “In 1.000 1.000 1.1!!) 1.1111 I.” IN ‘ M 1.1!!) 1.000 0.577 0.370 0.861 0.555 0.547 0.540 0.533 0.505 0.751 0.755 0.769 0.756 0.743 0.731 0.715 0.705 0.594 0.550 .0510 0.574 0 I 1 3 0.67:1 0.555 0.641 0.514 0.609 0.593 11.579 0.514. 0.477 0.435 g 0.591 0.571 0.551 0.534. 0.515 0.499 0.451 0.41.1 0.373 0.319 (I 7 5 IO GhOUCNO OLHNH 00.34. O‘HN‘O O 5 0.519 0.497 0.475 0.455 0.437 0.419 0.401 0.341 0.191 0.150 0.456 0.431 0.410 0390 0.370 0.351 - 0.335 0.175 0.117 0.159 0.400 0.376 0.354 0.333 0.314 0.195 0.179 0.111 0.175 0.143 0351 0.317 0.305 0.155 w 0.155 .0149 0.133 0.179 0.139 0.105 9 0.305 0.154 0.153 0.143 0.115 0.109 0.194 0.144 0.105 0.051 10 0.170 0.147 0.117 0.105 0.191 0.175 0.151 0.115 0.135 0.051 11 0.137 0.115 0.195 0.175 0.151 0.145 0.135 0.094 0.056 0.047 11 0.105 11.157 0.165 0.151 0.137 0.114 0.111 0.075 ' 0.051 _ 0.035 13 0.151 0.163 0.145 0.130 0.115 0.104 0.093 0.061 0.045 0.017 14 0.160 0.141 0.115 0.111 0.099 0.“! 0.075 0.049 0.031 0.011 15 0.140 0.113 0.105 0.095 0M4 0.074 0.055 0.1140 0.013 0.015 15 0.113 0.107 0.093 0.051 0.071 0.051 0.054 0.031 0.019 0.011 17 0.105- 0.093 0.050 0.059 0.060 0.051 0.045 0.015 0.015 0” 15 0.095 0.051 0.069 0.059 0.051 0.544 0.035 0.011 I 0.011 0.107 19 0.043 0.070 0.060 0.051 0.043 0.037 0.031 0.017 0.” 0.1115 10 0.073 0.061 0.051 0.043 0.037 0.1111 0.015 0.014 0.007 0014 14 0.043 0.035 0.015 0.013 0.019 0.015 0.013 0.005 0.1733 DWI 15 0.035 0.030 0.014 0.010 0.015 0.013 11.310 0W5 0.002 0.1311 30 0.010 0.015 ' 0.011 0.109 0N7 0.105 0.001 I 0.1111 0.000 40 0.1!)5- 0.314 ' 0.003 0.1111 0.001 0M] ' 0M! 0.“ 0.1111 0.1!” 5‘: 0.1101 ' 11.1!!! QM! 0.1!!) 0.011 0.000 0.1111 0.1!!) 0.000 0.” 0.1!” 0.000 0.” 0.1!!) 0.1!” 0.!!!) on” 0.1!!) 0.1!” 0.000 - 1_ -_'. 140140 ‘ 3111:1220 V2111. 11100 001‘. of 3]: pct 002201! 001 " ‘ "‘1‘. n. I. I 1|- ‘ Sgt-3‘9“) . 211‘245“ ‘1“?3 1‘ 1.000 1.000 1.000 1.000 1000; 2 - 2010 2.020 2.000 2.040 2.050 ‘ 0 0.000 0.000 0.001 0.122 0.102 I 4 4.000 4.122 4.104 4.240 4.010 _‘ . . .5 0.101---- 0.204.. 0.000 0410 0.020 . _ fl. 0 0.102 0.000 0.400 0.000 0.002 . 1.000 f; 1 . 1.214 1.404 1.002 1.000 0.142 0.004 0.004 0020* 0.200 11 0.200 0.000 0.002 0.214 0.040 0.001 10.200 10.001. 11.020 0 0.000 . 0.100 10.150 10.000 11.021 11.401 11.010 12.400 10.021 1 10.402 10.050 11.404 12.000 12.010 10.101 10.010 14.401 15.190. 11 11.501 12.100 12.000 10.400 14.201 14.012 10.104 10.045 11.000 12 12.000 10.412 14.102 15.020 15.011 10.010 11.000 10.011 20.141 15 10.000 14.000 15.010 10.021 11.110 10.002 20.141 21.495. 22.005 14 14.041 10.014 11.000 10.202 19.099 21.001 22.500 24.210 20.010 15 10.001 11.200 10.500 20.024 21.010 25.210 20.120 21.102 20.001 10 11.250 10.050 20.101 21.020 20.051 25.010 21.000 00.024 00.000 . . 11 10.450 20.012 21.102 20.000 20.040 20.210 00.040 00.150 00.014 . . 10 10.010 21.412 20.414 25.040 20.152 00.000 05.000 51.450 41.001 . . 10 20.011 22.041 20.111 21.011 00.059 00.100 01.010 41.440 40.010 . . . :20 22.010 24.201 20.010 20.110 00.000 00.100 40.005 45.102 01.100 01.210 54.205 12.002 00.041 .24 20.010 00.422 04.420 00.000 44.002 00.010 00.111 00.105 10.100 00.401 102.114 110.100 100.001 .25 20.240 02.000 00.450 41.040 41.121 04.000 00240 10.100 04.101 00.041 114.410 100.004 150.020 02 04.105 40.500 41.015 00.005 00.400 10.050 04.401 110.205 100.000 104.404 100.021 241.000 290.100 .40 40.000 00.402 10.401 05.020 120000104102 109.050 200.001 001.002 442.590 001.020 101.001 -1. 010.10: 50 04.400 04.012 112.101 102.001 200.040 200.000 400.020 010.110 010.004 1.10001 1.00011 2.40002 0.150.011. 100 01.010 114.002 100.000 251.001 050.504 050.120 010.020 1,250.21 1,044.10 0,004.02 4,100.01 1,411.04 11201.0 ' - 121111115. . . _ ' '_'._, . ' - 11 14". 15". I6". fl":- 1810 19% 10% . 2415' 2815' 1 31% 36% 40’4 1 1.000 1.000 1.000 1.000 1.000 4000 1.000 1.000 11100 2000 1.000 1000 2 '_2.140 2.150 2.150 2.110 2.100 2.190 2.200 2240 2200 2.120 2.550 2.400 5 5.440' 5.415 5.505 5.559 5.512 5.505 5.540 5.110 5.915 4.052 4210 4.550 4 4.921 4.995 5.055 5.141 5.215 5.291 5.550 5.504 5.015 5.552 5.125 1.104 5 5510 5.142 5.011 1.014 1.154 "1.291 1.442 0.045 0.100 9.590 10145 112044 - - . ‘ - .." 0 0 0.555 5.154 0.911 9.201 9.442 9.555 9.950 10.900' 12.155 15.405. 14.199 16314 1 10.150 11.051 11.414 11.112 12.142 12.525 12.915 14.515 10.554 10.595 21.125 15.555 0 15.255 15.12? 14240 14.115 15.121 15.902 15.499 19.125 22.155 _ 25.510 29.152 54.595 2 25.055 15.155 11.510 10.255 19.055 19.925 20.199 24.112 29.159 54.095 414.15 - 59-153 10' 59.551 20.504 21.521 22.595 25.521 24.109 25.959 51.545 50.592 _ 41.052 _ 51.551 2 0901.; 11 . 25.044 24.549 25.155 ‘ 21200 25.155 50.404 51.150 40250 50.199 55.122 15.995 95.151 12 21.211 29.002 50.150 52.524 54.951 51.100. 59.500 50.905 55.510 04.120. 100.451 139135 15‘ 52009 54.152 55.155 59.404 42219 45244 40.491 54.110 04.055 112.105 145.415 195.921 44 51.551 40.505 45.512 41.105 50.010‘ 54.541 59.195 00.495 109.512 149240 202.925 215.501: 15 45.042 41.500 51.550 - 50.110 50.955 55.251 12.055 2 100.015 141-305 197-991 10 50.900 55.111 50.925 55.549 12.959 19.550 01.442 " 125.011 101.010 252.550 511.592 541.901 11 59.110 55.015 11.515 15.919 01.050 95.022 105.951 151.255 255.191 541.110 514.551 159.184 II 55.594 15.055 04.141 95.405 105.140 115.155 125.111 595.994 500252 .459.449 100.959 1.00410. 19 111.959 05.212 95.505 110255 125.414 155.155 154.140 , 24405.1 55552.1 501.412 954.211 1.49153. ‘20 91025 102.444 115.550 150.055 145.520 155.410 100.550 505.501 494215 502.055 1,295.02 2.05921. 24 155.559 104.150 215.910 240.000 209.494 551010 592.454 125.451 1,552.50 1.44301 435090 3933-“! 25 151.511 211.195 249214 292.105 542.505 401.042.. 411.901. 095.092 1,105.50 5225.54 5.05500 11.24345; 50 555.151 454.145 550.121 541.459 190.941 955.112 1.101.110 2540.92 5.51525 12940.9 25.1125 505ng 40 1.54205 1,119.09 2,550.15 5,154.52 4.10521 5,529.05 1,545.50 22.1200 59,5110 201.514 009.390 50 4.99452 1,211.12 10.4555 15.0095 21.1152. 51.5155 45,491.27 195.515 019.105 3° .7 . .' _ 50 11.5551 29220.0 45.0515 12.5550 114,190 119,495 201,155 - ' '- -.*' " " - ' __ ‘ 1.1155. 0.000 1 .070 2.041 3.002 4.053 5.125 1.552 5.555 11.411 10.305 1 1.255 12.134 13.004 13.555 14.7 10 15.502 10.300 17.220 10.040 21.243 22.023 25.000 32.035 39.100 00 44.055 00-415 01315513.. 11 ' 1.101. .1 0.077 1 1.047 3 2.311 4 2.9.10 5 3.433 6 1 0 3.059 4.200 4.039 I 4.945 5.216 11 5.453 5.660 13 5.041 . 14 5.001 7.5 6.141 6.165 5.373 ‘10 0.467 6.550 0.023 6.035‘ 0.07.1 1.003 7.105 7.133 7.140 5.705 I P2555111: V5105 of $1 per 115110501: 12 {055051-1505 0.000 1 .942 2.004 3.505' 4.113 ' 5.001 0.472 7.325 0. 102 0.003 0.707 10.575 11.340 12.100 12.040 13.570 14.202 14.002 15.070 10.351 10.014 10.523 22.307 27.355 31.424 34.701 15% 0.071 1.013 2.520 2.115 3.111 3.530 4.550 4.452 5.411 5.242 5.230 5.502 1.525 5.133 1.155 1.435 5.535 5.111 0.253 5.155 2.554 11.355 15.535 5.055 11.255 10.553 11.935 11.115 12.551 11.552 13.100 12.100 13.154 12.5511 14.324 13.134 14.511 13.505 15.535 15.241 11.413- 15.522 10.550 11.232 23.115 13.103 25.130 21.452 21.515 22.523 1511. 0.352 1.555 2245 2.1911 3214 3.555 4.539 .4341 4.501 4.513 5.529 5.191 5342 5.455 5515 5.559 5.149 5.515 5.511 5.929 551:1 5.591 5.111 5233' 1;— (1-1-1 ‘- 1 ——1 1111:5255: hem: of 511 (ordinaryffim (W100 ' 42.1 ‘ ' 10.555 . 5.501 5.503“ 5.555” 1.135 _. 2.451 .- 3.170 3-7.9? 4.355 4555. 51335 5.155 {5.145 0.405 0.014 7.103 7.307 1.555 ‘ 7.024 0.022 0.201 0.30.5 0.514 0.005 0.077 ' 5.421" 0.770 0.015 0.007 / 1.113 _ 1.500;j__1.555n 2.444 2.402 73.351} 3.102 3.0012314; $4.554 4.423 '- 4.555 4.105 1; ' ...
View Full Document

This note was uploaded on 04/23/2008 for the course FINANCE 300 taught by Professor Wachowicz during the Spring '08 term at University of Tennessee.

Page1 / 22

FIN301Reserve - mi W‘s- Him Q31; :3 ifffltfi FIN301...

This preview shows document pages 1 - 22. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online