{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

physics final exam

# physics final exam - final 01 HILL WILLIAM Due 11:00 pm 1...

This preview shows pages 1–2. Sign up to view the full content.

final 01 – HILL, WILLIAM – Due: Dec 12 2007, 11:00 pm 1 Mechanics - Basic Physical Concepts Math: Circle: 2 π r , π r 2 ; Sphere: 4 π r 2 , (4 / 3) π r 3 Quadratic Eq.: a x 2 + b x + c = 0, x = b ± b 2 4 a c 2 a Cartesian and polar coordinates: x = r cos θ, y = r sin θ , r 2 = x 2 + y 2 , tan θ = y x Trigonometry: cos α cos β + sin α sin β = cos( α β ) sin α + sin β = 2 sin α + β 2 cos α β 2 cos α + cos β = 2 cos α + β 2 cos α β 2 sin2 θ = 2 sin θ cos θ, cos2 θ = cos 2 θ sin 2 θ 1 cos θ = 2 sin 2 θ 2 , 1 + cos θ = 2 cos 2 θ 2 Vector algebra: vector A = ( A x , A y ) = A x ˆ ı + A y ˆ Resultant: vector R = vector A + vector B = ( A x + B x , A y + B y ) Dot: vector A · vector B = A B cos θ = A x B x + A y B y + A z B z Cross product: ˆ ı × ˆ = ˆ k , ˆ × ˆ k = ˆ ı , ˆ k × ˆ ı = ˆ vector C = vector A × vector B = vextendsingle vextendsingle vextendsingle vextendsingle vextendsingle vextendsingle ˆ ı ˆ ˆ k A x A y A z B x B y B z vextendsingle vextendsingle vextendsingle vextendsingle vextendsingle vextendsingle C = A B sin θ = A B = A B , use right hand rule Calculus: d dx x n = n x n 1 , d dx ln x = 1 x , d sin θ = cos θ , d cos θ = sin θ , d dx const = 0 Measurements Dimensional analysis: e.g. , F = m a [ M ][ L ][ T ] 2 , or F = m v 2 r [ M ][ L ][ T ] 2 Summation: N i =1 ( a x i + b ) = a N i =1 x i + b N Motion One dimensional motion: v = d s dt , a = d v dt Average values: ¯ v = s f s i t f t i , ¯ a = v f v i t f t i One dimensional motion (constant acceleration): v ( t ) : v = v 0 + a t s ( t ) : s = ¯ v t = v 0 t + 1 2 a t 2 , ¯ v = v 0 + v 2 v ( s ) : v 2 = v 2 0 + 2 a s Nonuniform acceleration: x = x 0 + v 0 t + 1 2 a t 2 + 1 6 j t 3 + 1 24 s t 4 + 1 120 k t 5 + 1 720 p t 6 + . . . , (jerk, snap, . . . ) Projectile motion: t rise = t fall = t trip 2 = v 0 y g h = 1 2 g t 2 fall , R = v ox t trip Circular: a c = v 2 r , v = 2 π r T , f = 1 T (Hertz=s 1 ) Curvilinear motion: a = radicalBig a 2 t + a 2 r Relative velocity: vectorv = vectorv + vectoru Law of Motion and applications Force: vector F = mvectora, F g = m g, vector F 12 = vector F 21 Circular motion: a c = v 2 r , v = 2 π r T = 2 π r f Friction: F static μ s N F kinetic = μ k N Equilibrium (concurrent forces): i vector F i = 0 Energy Work (for all F): Δ W = W AB = W B W A F bardbl s = Fs cos θ = vector F · vectors integraltext B A vector F · dvectors (in Joules) Effects due to work done: vector F ext = mvectora vector F c vector f nc W ext | A B = K B K A + U B U A + W diss | A B Kinetic energy: K B K A = integraltext B A mvectora · dvectors , K = 1 2 m v 2 K (conservative vector F ): U B U A = integraltext B A vector F · dvectors U gravity = m g y , U spring = 1 2 k x 2 From U to vector F : F x = ∂ U ∂x , F y = ∂ U ∂y , F z = ∂ U ∂z F gravity = ∂ U ∂y = m g , F spring = ∂ U ∂x = k x Equilibrium: ∂ U ∂x = 0, 2 U ∂x 2 > 0 stable, < 0 unstable Power: P = d W dt = F v bardbl = F v cos θ = vector F · vectorv (Watts) Collision Impulse: vector I = Δ vector p = vector p f vector p i integraltext t f t i vector F dt Momentum: vector p = mvectorv Two-body: x cm = m 1 x 1 + m 2 x 2 m 1 + m 2 p cm M v cm = p 1 + p 2 = m 1 v 1 + m 2 v 2 F cm

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}