Section%201.5

# Section%201.5 - FW fetjiﬁexﬂ MA 180 Precalculus...

This preview shows pages 1–4. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: /' FW fetjiﬁexﬂ MA 180 - Precalculus _. - - Professor Terry . Section 1.5 Complex Numbers E Complex Numbers and Operations with Complex Numbers @412 M awake/r5 TR Type of numbers required ~ 1M are 1 were u e 3 X .. Irra/trtwdﬂ ampere x =4 C was H28 « Complex number a+bi , where a and b are real ’-{-*th' ‘3 , numbers and i2 = -l 61 4 5t 31 L Imaginary number a+bi with bee. Pure imaginary number In“ with b :0 Definition: Sum (a +bi) +(c+a’i) = (a + c) + (b + d)i Write the expression in the form a+bi . where a and b are real numbers. (—5+7i)+(4+9i) Z (—E—HA -—+ (Tweeﬂd "2 l—iﬂ-HLMr k Deﬁnition: Difference (a + bi) — (c+ ch") = (a — c) + (b n d)i Write the expression in the form a+bi , where a and b are real numbers. (—3+8i)—(2+3i) 1’ 65+ 3L) + (‘9‘ 5t.) a G 3 ‘ 3 “tr g‘E'DL “‘ — S 75.2% Deﬁnition: Product ((1 + bi)(c + di) = ac + adz' + bci + bar:2 = (ac \$217+ (ad + bc)i Write the expression in the form a+bi , where a and b are real numbers. ‘ ’Z (6+7i)2 =(®+7¢)(O+763 ‘2 30+‘(QLI‘H‘3C’f‘ Halli—J", ‘ 2 30 aqu +<3L4L z l-—¢3+E‘(¢(L «wee—3r) 2 '6G—eeirj went—oi Z a. 6o+o ~10; ifaﬂoei 1'92 z (L'H>2320323 1m MA‘iBO Sect .5 SpringO4 ewt Deﬁnition: Multiplication by a real number k k(a +bz‘) =ka +(kb)z‘ 7) ‘ Write the expression in the form a+bi , where a and b are real numbers. @)_(7_30 a QLi-t-UC *‘H-Bc’ ‘2 (ll/{573+ (0+3),- ‘f(2—7i)2 ‘2 z _+L{,C(L'2) ' at L—d5“1%tl)z rl—tgb “ZS/(:1— : 495433 1‘— (Q‘K "(l9ka Deﬁnition: Equality a + bi = c + di if and only if a = c and b = d Find the values of x and y, where x and y are real numbers. (x—y)+3i = 7+yi Em? POW/“L X “ “cl z7j\> X :C i... ﬂ __ Mung SE 537 Wald... GO_5>+3L.:7+3L: ‘52 '0 7+2); =q+e¢ / We can now solve x2 = —4 X 2 2M? i a J Con'u ates and Quotients of Com lex Numbers Deﬁnition of the Con'u ate of a Com lex Number: if z = a +bi is a complex number, then its conjugate, denoted by z, is a—bi. 3i. Properties of Coniugates __ _ (2—7i)+(82+‘ie) ‘2: @+33 ’i (‘q‘r‘f7L3 "2 +091 2 (2—7f)(a‘fhll:) '2 Li "tMW/“Lm (“El 2 i" ‘°EC"(“‘3 2 4+qu The sum and product of a Complex number and its conjugate are (‘gg ‘ numbers. MA180 Sec1.5 SpringO4 ewt l l Write the expression in the [email protected]~here a and b are real numbers. ‘ .5 __ 5” a Qﬂb. 2 75(él't'lcfv z IO-lv‘fb‘SLr 2—71' 1 3-7.; 811'“: {DWEXEM'IQ ‘53 lTb “aﬁirf Write the expression in the forhere a and b are real numbers. '— 3" Jo) 5 "QLFB —3—2i 5+21‘ m: 2 {:37 = 5o Multiply: 5475‘ 2' (iv/é— : 5C: 1 z 2 @ Note: If only one'of a or b is negative, then JEJE=JE. F=J¥i =Lxﬂ: Write the expression in the form a +bi , where a and b are real numbers. ewﬂﬁmﬂﬁﬁ z (~3+SC)(?'G£> Multiply: Deﬁnition: Principle square root «f—r for r > O . t1 2 *M won warez—30:, 2- wq + Sm“ —BO(Hr\ -l 30 MA180 8901.5 SpringO4 ewt \ Eguations with Comglex Solutions ' Find the Solution of the Equation: 1:2 —2x+26: 0 at! X: “('23 i Quiz-LNNZO Me) _ _2 Of i } C 2 X z a i V H "' ‘0 L" . I a X x3~27= dais—b5 w (a—bDCéLQ —e d/(O + to“) Find the Solution of the Equation: x 1(5): (x ~3 UCXD’ +3J( + ‘1 320 X-BEO Q3 XZ—th—M no Jitgb “baa (ML/3Q {2&0ng X2 *3: TAHOE!) 5.10) X ,2 — =5 :t W a) __ x 2 —~ 3 i W ' "mi: ##11‘5 i 3 L MA180 Sec1.5 Springo4 ewt ...
View Full Document

{[ snackBarMessage ]}

### Page1 / 4

Section%201.5 - FW fetjiﬁexﬂ MA 180 Precalculus...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online