Scikit-learn – training aperceptronfrom sklearn import datasetsimport numpy as npiris=datasets.load_iris()print (iris)X = iris.data[:, [2, 3]]y = iris.targetfrom sklearn.model_selection import train_test_splitX_train, X_test, y_train, y_test = train_test_split(X, y,test_size=0.3, random_state=1, stratify=y)from sklearn.preprocessing import StandardScalersc = StandardScaler()sc.fit(X_train)X_train_std = sc.transform(X_train)X_test_std = sc.transform(X_test)from sklearn.linear_model import Perceptronppn = Perceptron(eta0=0.1, random_state=1)ppn.fit(X_train_std, y_train)y_pred = ppn.predict(X_test_std)print('\nMisclassified examples: %d' % (y_test !=y_pred).sum())from sklearn.metrics import accuracy_scoreprint('Accuracy: %.3f' % accuracy_score(y_test, y_pred))SANJAY KUMAR C K