A.P. Calc AB and BC Released Exams - \"1 $BMDVMVT.VMUJQMF$IPJDF 2VFTUJPO$PMMFDUJPO o XXXDPMMFHFCPBSEDPN 5IF$PMMFHF#PBSE$POOFDUJOH4UVEFOUTUP$PMMFHF4VDDFTT

A.P. Calc AB and BC Released Exams - "1...

This preview shows page 1 out of 243 pages.

You've reached the end of your free preview.

Want to read all 243 pages?

Unformatted text preview: "1 $BMDVMVT .VMUJQMF$IPJDF 2VFTUJPO$PMMFDUJPO o ¥ DPOOFDUUPDPMMFHFTVDDFTT™ XXXDPMMFHFCPBSEDPN 5IF$PMMFHF#PBSE$POOFDUJOH4UVEFOUTUP$PMMFHF4VDDFTT 5IF$PMMFHF#PBSEJTBOPUGPSQSPGJUNFNCFSTIJQBTTPDJBUJPOXIPTFNJTTJPOJTUPDPOOFDU TUVEFOUTUPDPMMFHFTVDDFTTBOEPQQPSUVOJUZ'PVOEFEJO UIFBTTPDJBUJPOJTDPNQPTFE PGNPSFUIBO TDIPPMT DPMMFHFT VOJWFSTJUJFT BOEPUIFSFEVDBUJPOBMPSHBOJ[BUJPOT&BDI ZFBS UIF$PMMFHF#PBSETFSWFTPWFSUISFFBOEBIBMGNJMMJPOTUVEFOUTBOEUIFJSQBSFOUT   IJHITDIPPMT BOE DPMMFHFTUISPVHINBKPSQSPHSBNTBOETFSWJDFTJODPMMFHFBENJTTJPOT  HVJEBODF BTTFTTNFOU GJOBODJBMBJE FOSPMMNFOU BOEUFBDIJOHBOEMFBSOJOH"NPOHJUT CFTULOPXOQSPHSBNTBSFUIF4"5¥ UIF14"5/.425¥ BOEUIF"EWBODFE1MBDFNFOU 1SPHSBN¥ "1¥ 5IF$PMMFHF#PBSEJTDPNNJUUFEUPUIFQSJODJQMFTPGFYDFMMFODFBOEFRVJUZ  BOEUIBUDPNNJUNFOUJTFNCPEJFEJOBMMPGJUTQSPHSBNT TFSWJDFT BDUJWJUJFT BOEDPODFSOT $PQZSJHIUªCZ$PMMFHF#PBSE"MMSJHIUTSFTFSWFE$PMMFHF#PBSE "1$FOUSBM "1$% "EWBODFE1MBDFNFOU 1SPHSBN "1 "17FSUJDBM5FBNT 1SF"1 4"5 BOEUIFBDPSOMPHPBSFSFHJTUFSFEUSBEFNBSLTPGUIF$PMMFHF &OUSBODF&YBNJOBUJPO#PBSE"ENJUUFE$MBTT&WBMVBUJPO4FSWJDF $PMMFHF&E $POOFDUUPDPMMFHFTVDDFTT .Z3PBE  4"51SPGFTTJPOBM%FWFMPQNFOU 4"53FBEJOFTT1SPHSBN BOE4FUUJOHUIF$PSOFSTUPOFTBSFUSBEFNBSLTPXOFECZ UIF$PMMFHF&OUSBODF&YBNJOBUJPO#PBSE14"5/.425JTBUSBEFNBSLPGUIF$PMMFHF&OUSBODF&YBNJOBUJPO #PBSEBOE/BUJPOBM.FSJU4DIPMBSTIJQ$PSQPSBUJPO0UIFSQSPEVDUTBOETFSWJDFTNBZCFUSBEFNBSLTPGUIFJS SFTQFDUJWFPXOFST1FSNJTTJPOUPVTFDPQZSJHIUFE$PMMFHF#PBSENBUFSJBMTNBZCFSFRVFTUFEPOMJOFBU IUUQXXXDPMMFHFCPBSEDPNJORVJSZDCQFSNJUIUNM 7JTJUUIF$PMMFHF#PBSEPOUIF8FCXXXDPMMFHFCPBSEDPN "1$FOUSBMJTUIFPGGJDJBMPOMJOFIPNFGPSUIF"11SPHSBNBOE1SF"1BQDFOUSBMDPMMFHFCPBSEDPN "1$BMDVMVT.VMUJQMF$IPJDF2VFTUJPO$PMMFDUJPO $PQZSJHIUªCZ$PMMFHF#PBSE"MMSJHIUTSFTFSWFE"WBJMBCMFBUBQDFOUSBMDPMMFHFCPBSEDPN JJ ,"DDFTTBOE&RVJUZ*OJUJBUJWFT &RVJUZ1PMJDZ4UBUFNFOU 5IF$PMMFHF#PBSECFMJFWFTUIBUBMMTUVEFOUTTIPVMECFQSFQBSFEGPSBOEIBWFBOPQQPSUVOJUZ UPQBSUJDJQBUFTVDDFTTGVMMZJODPMMFHF BOEUIBUFRVJUBCMFBDDFTTUPIJHIFSFEVDBUJPONVTUCFB HVJEJOHQSJODJQMFGPSUFBDIFST DPVOTFMPST BENJOJTUSBUPST BOEQPMJDZNBLFST"TQBSUPGUIJT  BMMTUVEFOUTTIPVMECFHJWFOBQQSPQSJBUFHVJEBODFBCPVUDPMMFHFBENJTTJPOT BOEQSPWJEFE UIFGVMMTVQQPSUOFDFTTBSZUPFOTVSFDPMMFHFBENJTTJPOBOETVDDFTT"MMTUVEFOUTTIPVMECF FODPVSBHFEUPBDDFQUUIFDIBMMFOHFPGBSJHPSPVTBDBEFNJDDVSSJDVMVNUISPVHIFOSPMMNFOU JODPMMFHFQSFQBSBUPSZQSPHSBNTBOE"1DPVSTFT4DIPPMTTIPVMENBLFFWFSZFGGPSUUPFOTVSF UIBU"1BOEPUIFSDPMMFHFMFWFMDMBTTFTSFGMFDUUIFEJWFSTJUZPGUIFTUVEFOUQPQVMBUJPO5IF $PMMFHF#PBSEFODPVSBHFTUIFFMJNJOBUJPOPGCBSSJFSTUIBUMJNJUBDDFTTUPEFNBOEJOHDPVSTFT GPSBMMTUVEFOUT QBSUJDVMBSMZUIPTFGSPNUSBEJUJPOBMMZVOEFSSFQSFTFOUFEFUIOJD SBDJBM BOE TPDJPFDPOPNJDHSPVQT 'PSNPSFJOGPSNBUJPOBCPVUFRVJUZBOEBDDFTTJOQSJODJQMFBOEQSBDUJDF QMFBTFTFOEBOFNBJM UPBQFRVJUZ!DPMMFHFCPBSEPSH "1$BMDVMVT.VMUJQMF$IPJDF2VFTUJPO$PMMFDUJPO $PQZSJHIUªCZ$PMMFHF#PBSE"MMSJHIUTSFTFSWFE"WBJMBCMFBUBQDFOUSBMDPMMFHFCPBSEDPN JJJ 5BCMFPG$POUFOUT "CPVU5IJT$PMMFDUJPO 2VFTUJPOT WJ  "1$BMDVMVT"#&YBN 4FDUJPO  "1$BMDVMVT#$&YBN 4FDUJPO  "1$BMDVMVT"#&YBN 4FDUJPO  "1$BMDVMVT#$&YBN 4FDUJPO  "1$BMDVMVT"#&YBN 4FDUJPO  "1$BMDVMVT#$&YBN 4FDUJPO  "1$BMDVMVT"#&YBN 4FDUJPO  "1$BMDVMVT#$&YBN 4FDUJPO  "1$BMDVMVT"#&YBN 4FDUJPO  "1$BMDVMVT#$&YBN 4FDUJPO  "1$BMDVMVT"#&YBN 4FDUJPO   1BSU"   1BSU#  "1$BMDVMVT#$&YBN 4FDUJPO   1BSU"   1BSU#  "1$BMDVMVT"#&YBN 4FDUJPO   1BSU"   1BSU#  "1$BMDVMVT#$&YBN 4FDUJPO   1BSU"   1BSU#  "1$BMDVMVT.VMUJQMF$IPJDF2VFTUJPO$PMMFDUJPO $PQZSJHIUªCZ$PMMFHF#PBSE"MMSJHIUTSFTFSWFE"WBJMBCMFBUBQDFOUSBMDPMMFHFCPBSEDPN JW 5BCMFPG$POUFOUT "OTXFS,FZ  4PMVUJPOT  $BMDVMVT"#  $BMDVMVT#$  $BMDVMVT"#  $BMDVMVT#$  $BMDVMVT"#  $BMDVMVT#$  $BMDVMVT"#  $BMDVMVT#$  $BMDVMVT"#  $BMDVMVT#$  $BMDVMVT"#   1BSU"   1BSU#  $BMDVMVT#$   1BSU"   1BSU#  $BMDVMVT"#   1BSU"   1BSU#  $BMDVMVT#$   1BSU"   1BSU#  "1$BMDVMVT.VMUJQMF$IPJDF2VFTUJPO$PMMFDUJPO $PQZSJHIUªCZ$PMMFHF#PBSE"MMSJHIUTSFTFSWFE"WBJMBCMFBUBQDFOUSBMDPMMFHFCPBSEDPN W "CPVU5IJT$PMMFDUJPO "CPVU5IJT$PMMFDUJPO .VMUJQMFDIPJDFRVFTUJPOTGSPNQBTU"1$BMDVMVT&YBNTQSPWJEFBSJDISFTPVSDFGPS UFBDIJOHUPQJDTJOUIFDPVSTFBOESFWJFXJOHGPSUIFFYBNFBDIZFBS0WFSUIFZFBST  TPNFUPQJDTIBWFCFFOBEEFEPSSFNPWFE CVUBMNPTUBMMPGUIFPMERVFTUJPOTTUJMMPGGFS JOUFSFTUJOHPQQPSUVOJUJFTUPJOWFTUJHBUFDPODFQUTBOEBTTFTTTUVEFOUVOEFSTUBOEJOH "MXBZTDPOTVMUUIFNPTUSFDFOU$PVSTF%FTDSJQUJPOPO"1$FOUSBM¥GPSUIFDVSSFOU UPQJDPVUMJOFTGPS$BMDVMVT"#BOE$BMDVMVT#$ 1MFBTFOPUFUIFGPMMPXJOH t 5IFTPMVUJPOUPFBDINVMUJQMFDIPJDFRVFTUJPOTVHHFTUTPOFQPTTJCMFXBZUP TPMWFUIBURVFTUJPO5IFSFBSFPGUFOBMUFSOBUJWFBQQSPBDIFTUIBUQSPEVDFUIF TBNFDIPJDFPGBOTXFS BOEGPSTPNFRVFTUJPOTTVDINVMUJQMFBQQSPBDIFT BSFQSPWJEFE5FBDIFSTBSFBMTPFODPVSBHFEUPJOWFTUJHBUFIPXUIFJODPSSFDU PQUJPOTGPSFBDIRVFTUJPODPVMECFPCUBJOFEUPIFMQTUVEFOUTVOEFSTUBOE BOEBWPJE DPNNPOUZQFTPGNJTUBLFT t 4DJFOUJGJD OPOHSBQIJOH DBMDVMBUPSTXFSFSFRVJSFEPOUIF"1$BMDVMVT &YBNTJO t (SBQIJOHDBMDVMBUPSTIBWFCFFOSFRVJSFEPOUIF"1$BMDVMVT&YBNTTJODF *OBOE 4FDUJPO* 1BSU"EJEOPUBMMPXUIFVTFPGB DBMDVMBUPS4FDUJPO* 1BSU#SFRVJSFEUIFVTFPGBHSBQIJOHDBMDVMBUPS t .BUFSJBMTJODMVEFEJOUIJTSFTPVSDFNBZOPUSFGMFDUUIFDVSSFOU"1$PVSTF %FTDSJQUJPOBOEFYBNJOUIJTTVCKFDU BOEUFBDIFSTBSFBEWJTFEUPUBLFUIJT JOUPBDDPVOUBTUIFZVTFUIFTFNBUFSJBMTUPTVQQPSUUIFJSJOTUSVDUJPOPG TUVEFOUT'PSVQUPEBUFJOGPSNBUJPOBCPVUUIJT"1DPVSTFBOEFYBN QMFBTF EPXOMPBEUIFPGGJDJBM"1$PVSTF%FTDSJQUJPOGSPNUIF"1$FOUSBM8FCTJUF BUBQDFOUSBMDPMMFHFCPBSEDPN "1$BMDVMVT.VMUJQMF$IPJDF2VFTUJPO$PMMFDUJPO $PQZSJHIUªCZ$PMMFHF#PBSE"MMSJHIUTSFTFSWFE"WBJMBCMFBUBQDFOUSBMDPMMFHFCPBSEDPN WJ 1969 AP Calculus AB: Section I 90 Minutes—No Calculator Note: In this examination, ln x denotes the natural logarithm of x (that is, logarithm to the base e). 1. 2. 3. Which of the following defines a function f for which f (− x) = − f ( x) ? (A) f ( x) = x 2 (B) f ( x) = sin x (D) f ( x) = log x (E) f ( x) = e x ln ( x − 2 ) < 0 if and only if (A) x<3 (B) 0< x<3 (D) x>2 (E) x>3 ⎧ 2x + 5 − x + 7 , for x ≠ 2, ⎪ f ( x) = If ⎨ x−2 ⎪ f (2) = k ⎩ (A) 0 4. 8 ∫0 dx 1+ x (A) 1 5. f ( x) = cos x (C) 2< x<3 and if f is continuous at x = 2 , then k = (B) 1 6 (C) 1 3 (D) 1 (E) 7 5 (B) 3 2 (C) 2 (D) 4 (E) 6 (D) 4 (E) not defined = If 3 x 2 + 2 xy + y 2 = 2, then the value of (A) –2 (C) (B) 0 dy at x = 1 is dx (C) 2 AP Calculus Multiple-Choice Question Collection Copyright © 2005 by College Board. All rights reserved. Available at apcentral.collegeboard.com. 1 1969 AP Calculus AB: Section I 8 6. (A) 0 (E) 7. 1 2 For what value of k will x + (C) 1 (D) The limit does not exist. k have a relative maximum at x = −2? x (B) –2 (C) 2 (D) 4 (E) None of these If p ( x) = ( x + 2 )( x + k ) and if the remainder is 12 when p( x) is divided by x − 1, then k = (A) 2 9. (B) It cannot be determined from the information given. (A) –4 8. 8 ⎛1 ⎞ ⎛1⎞ 8⎜ + h ⎟ − 8⎜ ⎟ 2 ⎠ ⎝2⎠ ? What is lim ⎝ h →0 h (B) 3 (C) 6 (D) 11 (E) 13 When the area in square units of an expanding circle is increasing twice as fast as its radius in linear units, the radius is (A) 1 4π (B) 1 4 (C) 1 π (D) 1 (E) π (E) ln x 10. The set of all points (et , t ) , where t is a real number, is the graph of y = (A) 1 ex (B) 1 ex (C) 1 xex (D) 1 ln x 1⎞ ⎛ 11. The point on the curve x 2 + 2 y = 0 that is nearest the point ⎜ 0, − ⎟ occurs where y is 2⎠ ⎝ 1 1 (B) 0 (C) − (D) −1 (E) none of the above (A) 2 2 AP Calculus Multiple-Choice Question Collection Copyright © 2005 by College Board. All rights reserved. Available at apcentral.collegeboard.com. 2 1969 AP Calculus AB: Section I 12. If f ( x) = (A) 4 and g ( x) = 2 x, then the solution set of f ( g ( x) ) = g ( f ( x) ) is x −1 ⎧1 ⎫ ⎨ ⎬ ⎩3⎭ (B) {2} (C) {3} (D) {−1, 2} (E) ⎧1 ⎫ ⎨ , 2⎬ ⎩3 ⎭ 13. The region bounded by the x-axis and the part of the graph of y = cos x between x = − π and 2 π π is separated into two regions by the line x = k . If the area of the region for − ≤ x ≤ k is 2 2 π three times the area of the region for k ≤ x ≤ , then k = 2 x= ⎛1⎞ (A) arcsin ⎜ ⎟ ⎝4⎠ (D) π 4 (B) ⎛1⎞ arcsin ⎜ ⎟ ⎝3⎠ (E) π 3 (C) π 6 14. If the function f is defined by f ( x) = x5 − 1, then f −1 , the inverse function of f , is defined by f −1 ( x) = (A) (D) 1 5 x +1 5 x −1 (B) (E) 1 5 x +1 5 x +1 (C) 5 x −1 15. If f ′( x) and g ′( x) exist and f ′( x) > g ′( x) for all real x, then the graph of y = f ( x) and the graph of y = g ( x) (A) intersect exactly once. (B) intersect no more than once. (C) do not intersect. (D) could intersect more than once. (E) have a common tangent at each point of intersection. AP Calculus Multiple-Choice Question Collection Copyright © 2005 by College Board. All rights reserved. Available at apcentral.collegeboard.com. 3 1969 AP Calculus AB: Section I 16. If y is a function of x such that y′ > 0 for all x and y′′ < 0 for all x, which of the following could be part of the graph of y = f ( x) ? 17. The graph of y = 5 x 4 − x5 has a point of inflection at (A) (0, 0) only (B) (3,162) only (D) (0,0) and (3,162 ) (E) (0, 0) and (4, 256) (C) (4, 256) only 18. If f ( x) = 2 + x − 3 for all x, then the value of the derivative f ′( x) at x = 3 is (A) −1 (B) 0 (C) 1 (D) 2 (E) nonexistent 19. A point moves on the x-axis in such a way that its velocity at time t ( t > 0 ) is given by v = ln t . t At what value of t does v attain its maximum? (A) 1 (E) (B) 1 e2 (C) e (D) 3 e2 There is no maximum value for v. AP Calculus Multiple-Choice Question Collection Copyright © 2005 by College Board. All rights reserved. Available at apcentral.collegeboard.com. 4 1969 AP Calculus AB: Section I 20. An equation for a tangent to the graph of y = arcsin (A) x − 2y = 0 (B) x− y =0 (C) x at the origin is 2 x=0 y=0 (D) π x − 2y = 0 (E) 21. At x = 0 , which of the following is true of the function f defined by f ( x) = x 2 + e −2 x ? (A) f is increasing. (B) f is decreasing. (C) f is discontinuous. (D) f has a relative minimum. (E) 22. f has a relative maximum. ( ) d ln e 2 x = dx (A) 1 e 2x (B) 2 e2 x (C) 2x (D) 1 (E) 2 23. The area of the region bounded by the curve y = e2x , the x-axis, the y-axis, and the line x = 2 is equal to (A) e4 −e 2 (B) e4 −1 2 (D) 2e4 − e (E) 2e4 − 2 24. If sin x = e y , 0 < x < π, what is (A) − tan x (B) − cot x (C) e4 1 − 2 2 (E) csc x dy in terms of x ? dx (C) cot x AP Calculus Multiple-Choice Question Collection Copyright © 2005 by College Board. All rights reserved. Available at apcentral.collegeboard.com. (D) tan x 5 1969 AP Calculus AB: Section I 25. A region in the plane is bounded by the graph of y = x = 2m, m > 0 . The area of this region 1 , the x-axis, the line x = m, and the line x (A) is independent of m . (B) increases as m increases. (C) decreases as m increases. 1 1 ; increases as m increases when m > . 2 2 1 1 increases as m increases when m < ; decreases as m increases when m > . 2 2 (D) decreases as m increases when m < (E) 26. 1 ∫0 x 2 − 2 x + 1 dx is (A) −1 (B) − 1 2 1 2 (D) 1 (E) none of the above (C) 27. If dy = tan x , then y = dx (A) 1 tan 2 x + C 2 (B) sec 2 x + C (D) ln cos x + C (E) sec x tan x + C (C) ln sec x + C (E) 3 3 28. The function defined by f ( x) = 3 cos x + 3sin x has an amplitude of (A) 3− 3 (B) 3 (C) 2 3 AP Calculus Multiple-Choice Question Collection Copyright © 2005 by College Board. All rights reserved. Available at apcentral.collegeboard.com. (D) 3+ 3 6 1969 AP Calculus AB: Section I 29. ∫π 4 cos x dx = sin x (A) ln 2 π 2 (B) ln π 4 (C) ln 3 (D) 3 2 ln (E) ln e 30. If a function f is continuous for all x and if f has a relative maximum at ( −1, 4) and a relative minimum at (3, − 2) , which of the following statements must be true? (A) The graph of f has a point of inflection somewhere between x = −1 and x = 3. (B) f ′(−1) = 0 (C) The graph of f has a horizontal asymptote. (D) The graph of f has a horizontal tangent line at x = 3 . (E) The graph of f intersects both axes. 31. If f ′( x) = − f ( x) and f (1) = 1, then f ( x) = (A) 1 −2 x + 2 e 2 (B) e − x −1 (C) e1− x (D) e− x (E) −e x 32. If a, b, c, d , and e are real numbers and a ≠ 0 , then the polynomial equation ax 7 + bx5 + cx3 + dx + e = 0 has (A) (B) (C) (D) (E) only one real root. at least one real root. an odd number of nonreal roots. no real roots. no positive real roots. 33. What is the average (mean) value of 3t 3 − t 2 over the interval −1 ≤ t ≤ 2 ? (A) 11 4 (B) 7 2 (C) 8 AP Calculus Multiple-Choice Question Collection Copyright © 2005 by College Board. All rights reserved. Available at apcentral.collegeboard.com. (D) 33 4 (E) 16 7 1969 AP Calculus AB: Section I 34. Which of the following is an equation of a curve that intersects at right angles every curve of the 1 family y = + k (where k takes all real values)? x 1 1 (D) y = x3 (E) y = ln x (C) y = − x3 (A) y = − x (B) y = − x 2 3 3 35. At t = 0 a particle starts at rest and moves along a line in such a way that at time t its acceleration is 24t 2 feet per second per second. Through how many feet does the particle move during the first 2 seconds? (A) 32 (B) 48 (C) 64 (D) 96 (E) 192 36. The approximate value of y = 4 + sin x at x = 0.12 , obtained from the tangent to the graph at x = 0, is (A) 2.00 (B) 2.03 (C) 2.06 (D) 2.12 (E) 2.24 37. Which is the best of the following polynomial approximations to cos 2 x near x = 0 ? (A) 1 + 38. x2 ∫ ex 3 x 2 (B) 1 + x (C) 1 − x2 2 (D) 1 − 2x 2 (E) 1 − 2x + x 2 (C) − (E) sec2 e dx = 3 (A) 3 1 − ln e x + C 3 (B) (D) 3 1 ln e x + C 3 (E) ex − +C 3 x3 3e x3 1 3e x 3 +C +C 1 dy 39. If y = tan u , u = v − , and v = ln x , what is the value of at x = e ? v dx (A) 0 (B) 1 e (C) 1 AP Calculus Multiple-Choice Question Collection Copyright © 2005 by College Board. All rights reserved. Available at apcentral.collegeboard.com. (D) 2 e 8 1969 AP Calculus AB: Section I 40. If n is a non-negative integer, then 1 ∫0 x (A) no n (D) nonzero n, only n 1 0 (1 − x )n dx for (B) n even, only (E) all n ⎧⎪ f ( x) = 8 − x 2 for − 2 ≤ x ≤ 2, 41. If ⎨ then 2 elsewhere , ⎪⎩ f ( x) = x (A) 0 and 8 dx = ∫ (B) 8 and 16 (C) n odd, only 3 ∫ −1 f ( x) dx is a number between (C) 16 and 24 (D) 24 and 32 (E) 32 and 40 42. What are all values of k for which the graph of y = x3 − 3 x 2 + k will have three distinct x-intercepts? (A) All k > 0 43. (B) All k < 4 (C) k = 0, 4 (D) 0 < k < 4 (E) All k ∫ sin ( 2 x + 3) dx = (A) 1 cos ( 2 x + 3) + C 2 (B) cos ( 2 x + 3) + C (D) 1 − cos ( 2 x + 3) + C 2 (E) 1 − cos ( 2 x + 3) + C 5 (C) 44. The fundamental period of the function defined by f ( x) = 3 − 2 cos 2 (A) 1 (B) 2 (C) 3 − cos ( 2 x + 3) + C πx is 3 (D) 5 (E) 6 (C) 3x 2 g x3 d d d2 2 45. If ( f ( x) ) = g ( x) and ( g ( x) ) = f ( x ) , then 2 f ( x3 ) = dx dx dx ( ( ) (A) f x6 (D) 9 x 4 f x 6 + 6 x g x3 ( ) ( ) ) ( ) (B) g x3 (E) f x 6 + g x3 ( ) ( ) ( ) AP Calculus Multiple-Choice Question Collection Copyright © 2005 by College Board. All rights reserved. Available at apcentral.collegeboard.com. 9 1969 AP Calculus BC: Section I 90 Minutes—No Calculator Note: In this examination, ln x denotes the natural logarithm of x (that is, logarithm to the base e). 1. 1 t are The asymptotes of the graph of the parametric equations x = , y = t t +1 (A) (D) 2. (B) (C) (D) (E) ( −1, 0 ) (C) x = −1, y = 0 (B) ( 0, 0 ) (C) ( 0,1) (D) ⎛ π⎞ ⎜1, ⎟ ⎝ 4⎠ (E) ⎛ π⎞ ⎜1, ⎟ ⎝ 2⎠ 8 ∫0 ( 2,1) (1,1) ( 2, 2 ) ⎛1 1 ⎞ ⎜2, ⎟ 2⎠ ⎝ None of the above dx 1+ x (A) 1 5. x = 0 only x = 0, y = 1 The Mean Value Theorem guarantees the existence of a special point on the graph of y = x between ( 0, 0 ) and ( 4, 2 ) . What are the coordinates of this point? (A) 4. (B) (E) What are the coordinates of the inflection point on the graph of y = ( x + 1) arctan x ? (A) 3. x = 0, y = 0 x = −1 only = (B) 3 2 (C) 2 If 3 x 2 + 2 xy + y 2 = 2, then the value of dy at x = 1 is dx (A) –2 (C) (B) 0 2 AP Calculus Multiple-Choice Question Collection Copyright © 2005 by College Board. All rights reserved. Available at apcentral.collegeboard.com. (D) 4 (E) 6 (D) 4 (E) not defined 10 1969 AP Calculus BC: Section I 8 6. 1 (C) 1 (D) The limit does not exist. 2 It cannot be determined from the information given. (A) 0 (E) 7. (B) For what value of k will x + (A) –4 8. 8 ⎛1 ⎞ ⎛1⎞ 8⎜ + h ⎟ − 8⎜ ⎟ 2 ⎠ ⎝2⎠ ? What is lim ⎝ h →0 h k have a relative maximum at x = −2? x (B) –2 (C) (D) 10. (D) 4 (E) None of these If h( x) = f 2 ( x) − g 2 ( x) , f ′( x) = − g ( x) , and g ′( x) = f ( x), then h′( x) = (A) 0 9. 2 ( − g ( x) )2 − ( f ( x) )2 (B) 1 (C) (E) −2 ( − g ( x ) + f ( x ) ) −4 f ( x) g ( x) The area of the closed region bounded by the polar graph of r = 3 + cos θ is given by the integral 2π (A) ∫0 (D) ∫ 0 ( 3 + cos θ) d θ 1 ∫0 (A) 3 + cos θ d θ π x2 x2 + 1 π (B) ∫0 (E) 2∫ 3 + cos θ d θ π 2 0 (C) 2∫ π 2 0 ( 3 + cos θ ) d θ 3 + cos θ d θ dx = 4−π 4 (B) ln 2 (C) 0 AP Calculus Multiple-Choice Question Collection Copyright © 2005 by College Board. All rights reserved. Available at apcentral.collegeboard.com. (D) 1 ln 2 2 (E) 4+π 4 11 1969 AP Calculus BC: Section I 1⎞ ⎛ 11. The point on the curve x 2 + 2 y = 0 that is nearest the point ⎜ 0, − ⎟ occurs where y is 2⎠ ⎝ 1 (A) 2 (B) 0 1 (C) − 2 (D) −1 (E) none of the above 12. If F ( x) = ∫ x 0 2 e −t dt , then F ′( x) = − x2 (A) 2 xe (D) e− x − 1 2 (B) −2 xe (E) e− x − x2 (C) e− x 2 +1 − x2 + 1 −e 2 13. The region bounded by the x-axis and the part of the graph of y = cos x between x = − π and 2 π π is separated into two regions by the line x = k . If the area of the region for − ≤ x ≤ k is 2 2 π three times the area of the region for k ≤ x ≤ , then k = 2 x= ⎛1⎞ (A) arcsin ⎜ ⎟ (B) ⎝4⎠ ⎛1⎞ arcsin ⎜ ⎟ ⎝3⎠ 14. If y = x 2 + 2 and u = 2 x − 1, then (A) (D) 2 x2 − 2 x + 4 ( 2 x − 1) 2 x (C) π 6 (D) π 4 (E) π 3 (C) x2 dy = du (B) 6 x2 − 2 x + 4 (E) 1 x AP Calculus Multiple-Choice Question Collection Copyright © 2005 by College Board. All rights reserved. Available at apcentral.collegeboard.com. 12 1969 AP Calculus BC: Section I 15. If f ′( x) and g ′( x) exist and f ′( x) > g ′( x) for all real x, then the graph of y = f ( x) and the graph of y = g ( x) (A) intersect exactly once. (B) intersect no more than once. (C) do not intersect. (D) could intersect more than once. (E) have a common tangent at each point of intersection. 16. If y is a function x such that y′ > 0 for all x and y′′ < 0 for all x, which of the following could be part of the graph of y = f ( x) ? 17. The graph of y = 5 x 4 − x5 has a point of inflection at (A) (D) ( 0, 0 ) ( 0, 0 ) only (B) and ( 3,162 ) (E) ( 3,162 ) only ( 0, 0 ) and ( 4, 256 ) (C) ( 4, 256 ) only 18. If f ( x) = 2 + x − 3 for all x, then the value of the derivative f ′( x) at x = 3 is (A) −1 (B) 0 (C) 1 AP Calculus Multiple-Choice Question Collection Copyright © 2005 by College Board. All rights reserved. Available at apcentral.collegeboard.com. (D) 2 (E) nonexistent 13 1969 AP Calculus BC: Section I 19. A point moves on the x-axis in such a way that its velocity at time t ( t > 0 ) is given by v = ln t . t At what value of t does v attain its maximum? (A) 1 (E) (B) 1 e2 (C) e (D) 3 e2 There is no ...
View Full Document

  • Fall '15
  • ianlindsay
  • Ecology, Natural logarithm, Logarithm, Calculus Multiple-Choice Question

  • Left Quote Icon

    Student Picture

  • Left Quote Icon

    Student Picture

  • Left Quote Icon

    Student Picture