Section%201.1

Section 1.1 - r 7{QBJOLWOCKI MA 180 Precalcuius Professor Terry Section 1.1 Real Numbers C ‘ ‘ D q A l 6 t 6 Counting Numbers C(O r M CLAW"

Info iconThis preview shows pages 1–4. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: / r 7 {QBJOLWOCKI} MA 180 - Precalcuius . _ Professor Terry Section 1.1: Real Numbers C ‘ ‘ D ' q ' A - l 6 t 6 Counting Numbers C (O r M CLAW" a} ti a") e K LP i | I (as) ' V‘ ‘ g t (3 | IT 1 l ( L l l r Whole Numbers . Oil.'3\l;5,‘-'{,ql(pl’7) Eer‘Q Integers _ ‘HS Hm ‘E'fii—Qlol [012]?)th “631% Equality Q, 2 2 N04- Oci' [0 waq’o Efilkaj PrimeNumbers lOthi {‘LSeIQJe. Q‘slafi' ill isn’t. 14' 25,3993“ 3‘1, Fundamental Theorem of Arithmetic: Every positive integer different from 1 can be expressed as a product of primes in one and only one way (except for order of factors). 12=atav3 13:31:33 0‘ I 252: Z r 330: Erma :2 i9 c - 31;) 3E 0i 5 / \ I e ------ mm— ; it? 931.9.“ Rational Numbers CL 3 _ . * "E; (1 arms; b cliff {VN'L€3'CEV:=FOJ 9W3 3% ) s‘n 515%.fi "4 AMLM w" Irrational Numbers I I 7 I Géjflv m“ "‘1 avg a S a.@)\@~ law forms if.) BO flog—M @DO MO'C Fffilag. Z em - 0L? O '2 O QM \i/V/ZA/Lj \FcaQ :ii an 2 {mo g «2% V0 j '73 g (3 &a [9:20 met/W (EL—7% O 05. 1be: O 7 MA180 Sec1.1 SpringO4 ewt Real Numbers - Summary” . — - D“. n [KLEC m L0. in Oi ‘5 (flu/M7310 as M umber; » N I ' MAP 0 M We _p'—____ . F: Pro ertles of Real Numbers 0&0 CR Commutative Property ‘ Addition: ~91 -+ b "2 b-i Q, Multiplication: fl. a b '2 be CL Examples: Q‘i 3) = 5% Q %X \e.‘ Cg), 3 : 3. Q 5 '2 E ’5 Co Associative Property Addition: (our 503+ C, 2 GL-eafi. C) Multiplication: @ = t C 2 a a @ 0C) Eflgs:(&4g)jt‘( : g++Ci+LB gag‘g", 2 3(3qu N 9 : Li 2 Q ((7, 61 ‘ 0| a q 2 Q H ) Distributive Property $03 1 (EU) ‘i’ (1C, Example: 62 ( '3 —6 r,{\ *2 Q 13+ Q . u[ or C “(A z (9 ~t $3 ltl MA180 Sec1.1 SpringOA ewt Inequalities: > is g’rggfiflg than 2 “ firefly W G’fimflb < is 665 than ' f; ” lees ‘l’han w Qéquto” Insert a >, <, or = to make the resulting statement true. "3 > ‘5 <TWTW> g 4‘ 0.8 o.‘7s53'~?9165qud 0% 239 :3 17 l "l 2 l“1 % 4 0.143 4 0J4?) 2 > 0833 \f' O.%33 6 . ‘5 > M hematm. ‘>~ lkf Express each statement as an inequality. ' bed”) b is positive pis not greater than —2 ‘2? 5: "‘ 0:) Continued inequalities a < b '< c . 1 I a 4 l H b t een — d —. C, 4 Absolute value | 3 1 = 3 l-3 I = 3 Rewrite the number withOut using the absolute value symbol and simplify the result. 16|-|-3|_= 0—3 '2 E3] i: 2 I—2l [a MA180 Sect.1 Springfl4 ewt Distance —' A ’ The numbers —6, -2, and 4 are the coordinates of points A, B, and C on a coordinate line. Find t e distances. ‘3- (1’ $9.24.: d(A,B) 2 lib—Al = hag-(magi z l*9*k0(=“‘ilzm d(B,C) '2 [CL—55‘ 2 \kln(—&)\ Z \Lt+;1\=\(p\1@ d(C,B) 2 H3"Ct 2 ‘flanqk Q {nbl 2E d(A,C) "6 \C- 14\=’~ \q”('03\ 2 lq—W‘ 2 hot 2E The two given numbers are coordinates of points A and B, respectively, on a coordinate line. Express the indicated statement as an inequality involving the absolute value symbol. olCAIED>l x, -\/E d(A,B) is greater than 1 A: x Beefi Scientific Notation n CL >< _ lO l 4' Q 4 IO Express the number in decimal form: ,_. , s W, _____7_, 2 t 2 l? 30, aoo £qu mus/i expo View}. “a” i 2.9me 0 o 00,; Euation This Section Os 000 00 oo 5] d(A’B)=|B_AI Express the number in scientific form: F Ca 0.0000955 == 5 . 6 x IO 7 MA1803ec1.1SpringO4ewt r > SM is“: /" (@3059qu {1&me ...
View Full Document

This note was uploaded on 04/25/2008 for the course MATH 30191 taught by Professor Terry during the Spring '08 term at Montgomery.

Page1 / 4

Section 1.1 - r 7{QBJOLWOCKI MA 180 Precalcuius Professor Terry Section 1.1 Real Numbers C ‘ ‘ D q A l 6 t 6 Counting Numbers C(O r M CLAW"

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online