set5

set5 - THE UNIVERSITY OF SYDNEY Math1005 Statistics...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: THE UNIVERSITY OF SYDNEY Math1005 Statistics Semester 2 Tutorial Week 5 2006 1. Of a large (effectively infinite) number of mass-produced articles, it is known that one tenth are defective. Writing X for the number of defective items in a random sample of 8 of these articles, explain why X has a binomial distribution. 2. ( Multiple choice ) Writing the distribution of X in Q1 as X ∼ B ( n, p ), the values of n and p are: (a) 10 and 8 (b) 0.1 and 8 (c) 8 and 0.1 (d) 8 and 1 (e) ∞ and 5. 3. ( Multiple choice ) For the binomial random variable in Q2, P ( X ≤ 2) is: (a) 0.9950 (b) 0.8131 (c) 0.7969 (d) 0.9619 (e) -0.9619 4. Suppose that X is binomial B (10 , . 4). Write down an expression for P ( X = i ) for 0 ≤ i ≤ 10. Calculate P ( X ≤ 1) and P ( X < 3) directly. Verify your answers using binomial tables. Also use binomial tables to find P ( X ≤ 4), and P ( X > 3). 5. From previous experiments it is found that 40% of the mice used in an experiment become very aggressive within one minute of being administered an experimental drug. Using thevery aggressive within one minute of being administered an experimental drug....
View Full Document

Page1 / 2

set5 - THE UNIVERSITY OF SYDNEY Math1005 Statistics...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online