Homework 7_answers

Homework 7_answers - yp968 – Homework 7 – Radin...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: yp968 – Homework 7 – Radin – (58415) 1 This print-out should have 19 questions. Multiple-choice questions may continue on the next column or page – find all choices before answering. 001 10.0 points Evaluate the integral I = integraldisplay √ 3 3 x 2 √ 4- x 2 dx . 1. I = 3 2 parenleftBig π 3- √ 3 2 parenrightBig 2. I = 3 parenleftBig 2 π 3- √ 3 2 parenrightBig correct 3. I = 3 2 parenleftBig π 2- 1 parenrightBig 4. I = 3 parenleftBig π 2- 1 parenrightBig 5. I = π 2- √ 3 2 6. I = 2 π 3- 1 Explanation: Set x = 2 sin θ . Then dx = 2 cos θ dθ , while x = 0 = ⇒ θ = 0 , x = √ 3 = ⇒ θ = π 3 . In this case I = integraldisplay π/ 3 12 sin 2 θ 2 cos θ 2 cos θ dθ = 12 integraldisplay π/ 3 sin 2 θ dθ = 6 integraldisplay π/ 3 (1- cos 2 θ ) dθ = 6 bracketleftBig θ- 1 2 sin2 θ bracketrightBig π/ 3 . Consequently, I = 3 parenleftBig 2 π 3- √ 3 2 parenrightBig . keywords: 002 10.0 points Determine the integral I = integraldisplay x 2 (16- x 2 ) 3 / 2 dx . 1. I = 4 x √ 16- x 2- sin- 1 parenleftBig x 16 parenrightBig + C 2. I = x √ 16- x 2 + sin- 1 parenleftBig x 4 parenrightBig + C 3. I = 4 x 2 √ 16- x 2 + sin- 1 parenleftBig x 2 16 parenrightBig + C 4. I = x 2 √ 16- x 2 + sin- 1 parenleftBig x 2 4 parenrightBig + C 5. I = x √ 16- x 2- sin- 1 parenleftBig x 4 parenrightBig + C correct 6. I = 4 x √ 16- x 2- sin- 1 parenleftBig x 2 16 parenrightBig + C Explanation: Let x = 4 sin θ . Then dx = 4 cos θ dθ , 16- x 2 = 16cos 2 θ . In this case, I = integraldisplay 16 · 4 sin 2 θ cos θ 4 3 cos 3 θ dθ = integraldisplay sin 2 θ cos 2 θ dθ = integraldisplay tan 2 θ dθ . Now tan 2 θ = sec 2 θ- 1 , d dθ tan θ = sec 2 θ , yp968 – Homework 7 – Radin – (58415) 2 and so I = integraldisplay (sec 2 θ- 1) dθ = tan θ- θ + C . Consequently, I = x √ 16- x 2- sin- 1 parenleftBig x 4 parenrightBig + C with C ann arbitrary constant. 003 10.0 points Determine the integral I = integraldisplay 2 ( x 2 + 4) 3 2 dx . 1. I = √ x 2 + 4 2 x + C 2. I = 1 2 √ x 2 + 4 + C 3. I = √ x 2 + 4 x + C 4. I = x 2 √ x 2 + 4 + C correct 5. I = x √ x 2 + 4 2 + C 6. I = x √ x 2 + 4 + C Explanation: Set x = 2 tan u. Then dx = 2 sec 2 u du , while ( x 2 + 4) 3 2 = ( 4(tan 2 u + 1) ) 3 2 = 8 sec 3 u . Thus I = integraldisplay 4 8 sec 2 u sec 3 u du = 1 2 integraldisplay cos u du , and so I = 1 2 sin u + C = 1 2 sin parenleftBig tan- 1 x 2 parenrightBig + C . But by Pythagoras u radicalbig x 2 + 4 2 x we see that sin parenleftBig tan- 1 x 2 parenrightBig = x √ x 2 + 4 . Consequently, I = x 2 √ x 2 + 4 + C with C an arbitrary constant. keywords: trig substitution 004 10.0 points Determine the indefinite integral I = integraldisplay 3- 2 x √ x 2- 1 dx ....
View Full Document

This note was uploaded on 04/29/2008 for the course M 408L taught by Professor Radin during the Spring '08 term at University of Texas.

Page1 / 10

Homework 7_answers - yp968 – Homework 7 – Radin...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online