Physics Text Book - College Physics OpenStax College Rice...

This preview shows page 1 out of 1424 pages.

Unformatted text preview: College Physics OpenStax College Rice University 6100 Main Street MS-375 Houston, Texas 77005 To learn more about OpenStax College, visit . Individual print copies and bulk orders can be purchased through our website. © 2013 by Rice University. The textbook content was produced by OpenStax College and is licensed under a Creative Commons Attribution 4.0 International License. Under the license, any user of the textbook or the textbook content herein must provide proper attribution as follows: - - If you redistribute this textbook in a digital format (including but not limited to EPUB, PDF, and HTML), then you must retain on every page view the following attribution: Download for free at . If you redistribute this textbook in a print format, then you must include on every physical page the following attribution: Download for free at . If you redistribute part of this textbook, then you must display on every digital format page view (including but not limited to EPUB, PDF, and HTML) and on every physical printed page the following attribution: Download for free at . If you use this textbook as a bibliographic reference, then you should cite it as follows: OpenStax College, College Physics. OpenStax College. 21 June 2012. < ;. The OpenStax College name, OpenStax College logo, OpenStax College book covers, Connexions name, and Connexions logo are not subject to the license and may not be reproduced without the prior and express written consent of Rice University. For questions regarding this licensing, please contact [email protected] ISBN-10 1938168003 ISBN-13 978-1-938168-00-0 Revision CP-1-004-DW OpenStax College OpenStax College is a non-profit organization committed to improving student access to quality learning materials. Our free textbooks are developed and peer-reviewed by educators to ensure they are readable, accurate, and meet the scope and sequence requirements of modern college courses. Through our partnerships with companies and foundations committed to reducing costs for students, OpenStax College is working to improve access to higher education for all. OpenStax CNX The technology platform supporting OpenStax College is OpenStax CNX ( ), one of the world’s first and largest openeducation projects. OpenStax CNX provides students with free online and low-cost print editions of the OpenStax College library and provides instructors with tools to customize the content so that they can have the perfect book for their course. Rice University OpenStax College and OpenStax CNX are initiatives of Rice University. As a leading research university with a distinctive commitment to undergraduate education, Rice University aspires to path-breaking research, unsurpassed teaching, and contributions to the betterment of our world. It seeks to fulfill this mission by cultivating a diverse community of learning and discovery that produces leaders across the spectrum of human endeavor. Foundation Support OpenStax College is grateful for the tremendous support of our sponsors. Without their strong engagement, the goal of free access to high-quality textbooks would remain just a dream. Laura and John Arnold Foundation (LJAF) actively seeks opportunities to invest in organizations and thought leaders that have a sincere interest in implementing fundamental changes that not only yield immediate gains, but also repair broken systems for future generations. LJAF currently focuses its strategic investments on education, criminal justice, research integrity, and public accountability.! The William and Flora Hewlett Foundation has been making grants since 1967 to help solve social and environmental problems at home and around the world. The Foundation concentrates its resources on activities in education, the environment, global development and population, performing arts, and philanthropy, and makes grants to support disadvantaged communities in the San Francisco Bay Area.! Guided by the belief that every life has equal value, the Bill & Melinda Gates Foundation works to help all people lead healthy, productive lives. In developing countries, it focuses on improving people’s health with vaccines and other life-saving tools and giving them the chance to lift themselves out of hunger and extreme poverty. In the United States, it seeks to significantly improve education so that all young people have the opportunity to reach their full potential. Based in Seattle, Washington, the foundation is led by CEO Jeff Raikes and Co-chair William H. Gates Sr., under the direction of Bill and Melinda Gates and Warren Buffett.! The Maxfield Foundation supports projects with potential for high impact in science, education, sustainability, and other areas of social importance.! Our mission at the Twenty Million Minds Foundation is to grow access and success by eliminating unnecessary hurdles to affordability. We support the creation, sharing, and proliferation of more effective, more affordable educational content by leveraging disruptive technologies, open educational resources, and new models for collaboration between for-profit, nonprofit, and public entities.! Table of Contents Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Introduction: The Nature of Science and Physics . . . . . . . . . . . Physics: An Introduction . . . . . . . . . . . . . . . . . . . . . . . . . Physical Quantities and Units . . . . . . . . . . . . . . . . . . . . . . Accuracy, Precision, and Significant Figures . . . . . . . . . . . . . . . Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Displacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Vectors, Scalars, and Coordinate Systems . . . . . . . . . . . . . . . . Time, Velocity, and Speed . . . . . . . . . . . . . . . . . . . . . . . . Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Motion Equations for Constant Acceleration in One Dimension . . . . . Problem-Solving Basics for One-Dimensional Kinematics . . . . . . . . Falling Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Graphical Analysis of One-Dimensional Motion . . . . . . . . . . . . . 3 Two-Dimensional Kinematics . . . . . . . . . . . . . . . . . . . . . . . Kinematics in Two Dimensions: An Introduction . . . . . . . . . . . . . Vector Addition and Subtraction: Graphical Methods . . . . . . . . . . Vector Addition and Subtraction: Analytical Methods . . . . . . . . . . Projectile Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Addition of Velocities . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Dynamics: Force and Newton's Laws of Motion . . . . . . . . . . . . Development of Force Concept . . . . . . . . . . . . . . . . . . . . . Newton’s First Law of Motion: Inertia . . . . . . . . . . . . . . . . . . . Newton’s Second Law of Motion: Concept of a System . . . . . . . . . Newton’s Third Law of Motion: Symmetry in Forces . . . . . . . . . . . Normal, Tension, and Other Examples of Forces . . . . . . . . . . . . Problem-Solving Strategies . . . . . . . . . . . . . . . . . . . . . . . Further Applications of Newton’s Laws of Motion . . . . . . . . . . . . Extended Topic: The Four Basic Forces—An Introduction . . . . . . . . 5 Further Applications of Newton's Laws: Friction, Drag, and Elasticity Friction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Drag Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Elasticity: Stress and Strain . . . . . . . . . . . . . . . . . . . . . . . 6 Uniform Circular Motion and Gravitation . . . . . . . . . . . . . . . . Rotation Angle and Angular Velocity . . . . . . . . . . . . . . . . . . . Centripetal Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . Centripetal Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fictitious Forces and Non-inertial Frames: The Coriolis Force . . . . . . Newton’s Universal Law of Gravitation . . . . . . . . . . . . . . . . . . Satellites and Kepler’s Laws: An Argument for Simplicity . . . . . . . . 7 Work, Energy, and Energy Resources . . . . . . . . . . . . . . . . . . Work: The Scientific Definition . . . . . . . . . . . . . . . . . . . . . . Kinetic Energy and the Work-Energy Theorem . . . . . . . . . . . . . Gravitational Potential Energy . . . . . . . . . . . . . . . . . . . . . . Conservative Forces and Potential Energy . . . . . . . . . . . . . . . . Nonconservative Forces . . . . . . . . . . . . . . . . . . . . . . . . . Conservation of Energy . . . . . . . . . . . . . . . . . . . . . . . . . Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Work, Energy, and Power in Humans . . . . . . . . . . . . . . . . . . World Energy Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Linear Momentum and Collisions . . . . . . . . . . . . . . . . . . . . Linear Momentum and Force . . . . . . . . . . . . . . . . . . . . . . . Impulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Conservation of Momentum . . . . . . . . . . . . . . . . . . . . . . . Elastic Collisions in One Dimension . . . . . . . . . . . . . . . . . . . Inelastic Collisions in One Dimension . . . . . . . . . . . . . . . . . . Collisions of Point Masses in Two Dimensions . . . . . . . . . . . . . . Introduction to Rocket Propulsion . . . . . . . . . . . . . . . . . . . . 9 Statics and Torque . . . . . . . . . . . . . . . . . . . . . . . . . . . . The First Condition for Equilibrium . . . . . . . . . . . . . . . . . . . . The Second Condition for Equilibrium . . . . . . . . . . . . . . . . . . Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Applications of Statics, Including Problem-Solving Strategies . . . . . . Simple Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Forces and Torques in Muscles and Joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . 5 . 6 . 13 . 20 . 24 . 31 . 32 . 35 . 36 . 40 . 49 . 59 . 61 . 69 . 87 . 88 . 91 . 98 104 113 131 133 134 134 140 144 152 153 159 173 174 179 184 199 200 204 208 212 215 222 237 238 240 245 250 253 258 262 266 269 283 284 286 288 292 294 298 301 313 314 315 320 323 326 330 10 Rotational Motion and Angular Momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Angular Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Kinematics of Rotational Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Dynamics of Rotational Motion: Rotational Inertia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rotational Kinetic Energy: Work and Energy Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . Angular Momentum and Its Conservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Collisions of Extended Bodies in Two Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Gyroscopic Effects: Vector Aspects of Angular Momentum . . . . . . . . . . . . . . . . . . . . . . . . . 11 Fluid Statics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . What Is a Fluid? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Variation of Pressure with Depth in a Fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pascal’s Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Gauge Pressure, Absolute Pressure, and Pressure Measurement . . . . . . . . . . . . . . . . . . . . . Archimedes’ Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cohesion and Adhesion in Liquids: Surface Tension and Capillary Action . . . . . . . . . . . . . . . . . . Pressures in the Body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Fluid Dynamics and Its Biological and Medical Applications . . . . . . . . . . . . . . . . . . . . . . . Flow Rate and Its Relation to Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bernoulli’s Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Most General Applications of Bernoulli’s Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . Viscosity and Laminar Flow; Poiseuille’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Onset of Turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Motion of an Object in a Viscous Fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Molecular Transport Phenomena: Diffusion, Osmosis, and Related Processes . . . . . . . . . . . . . . . 13 Temperature, Kinetic Theory, and the Gas Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermal Expansion of Solids and Liquids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Ideal Gas Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Kinetic Theory: Atomic and Molecular Explanation of Pressure and Temperature . . . . . . . . . . . . . . Phase Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Humidity, Evaporation, and Boiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Heat and Heat Transfer Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Heat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Temperature Change and Heat Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Phase Change and Latent Heat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Heat Transfer Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Conduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Convection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The First Law of Thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The First Law of Thermodynamics and Some Simple Processes . . . . . . . . . . . . . . . . . . . . . . Introduction to the Second Law of Thermodynamics: Heat Engines and Their Efficiency . . . . . . . . . . Carnot’s Perfect Heat Engine: The Second Law of Thermodynamics Restated . . . . . . . . . . . . . . . Applications of Thermodynamics: Heat Pumps and Refrigerators . . . . . . . . . . . . . . . . . . . . . . Entropy and the Second Law of Thermodynamics: Disorder and the Unavailability of Energy . . . . . . . Statistical Interpretation of Entropy and the Second Law of Thermodynamics: The Underlying Explanation 16 Oscillatory Motion and Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hooke’s Law: Stress and Strain Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Period and Frequency in Oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Simple Harmonic Motion: A Special Periodic Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Simple Pendulum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Energy and the Simple Harmonic Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Uniform Circular Motion and Simple Harmonic Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . Damped Harmonic Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Forced Oscillations and Resonance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Superposition and Interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Energy in Waves: Intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Physics of Hearing . . . . . . . . . . ...
View Full Document

  • Left Quote Icon

    Student Picture

  • Left Quote Icon

    Student Picture

  • Left Quote Icon

    Student Picture